000 06262nam a22005293i 4500
001 EBC143914
003 MiAaPQ
005 20181121123432.0
006 m o d |
007 cr cnu||||||||
008 181113s2000 xx o ||||0 eng d
020 _a9780511151361
_q(electronic bk.)
020 _z9780521772181
035 _a(MiAaPQ)EBC143914
035 _a(Au-PeEL)EBL143914
035 _a(CaPaEBR)ebr5002303
035 _a(CaONFJC)MIL42126
035 _a(OCoLC)437072443
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQB810 .T36 2000
082 0 _a523.83
100 1 _aTassoul, Jean-Louis.
245 1 0 _aStellar Rotation.
264 1 _aCambridge :
_bCambridge University Press,
_c2000.
264 4 _c©2000.
300 _a1 online resource (274 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aCambridge Astrophysics ;
_vv.36
505 0 _aCover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Observational basis -- 1.1 Historical development -- 1.2 The Sun -- 1.2.1 Large-scale motions in the atmosphere -- 1.2.2 Helioseismology: The internal rotation rate -- 1.3 Single stars -- 1.4 Close binaries -- 1.5 Bibliographical notes -- 2 Rotating fluids -- 2.1 Introduction -- 2.2 The equations of fluid motion -- 2.2.1 Conservation principles -- 2.2.2 Boundary conditions -- 2.2.3 Rotating frame of reference -- 2.3 The vorticity equation -- 2.3.1 The Taylor-Proudman theorem -- 2.4 Reynolds stresses and eddy viscosities -- 2.5 Applications to the Earth's atmosphere -- 2.5.1 The geostrophic approximation -- 2.5.2 Ekman layer at a rigid plane boundary -- 2.5.3 Ekman pumping and secondary circulation -- 2.6 The wind-driven oceanic circulation -- 2.6.1 Ekman layer at the ocean-atmosphere interface -- 2.6.2 The Sverdrup relation -- 2.6.3 Western boundary currents: The Munk layer -- 2.7 Barotropic and baroclinic instabilities -- 2.7.1 The symmetric instability -- 2.7.2 The baroclinic instability -- 2.7.3 The shear-flow instability -- 2.8 Self-gravitating fluid masses -- 2.8.1 The virial equations -- 2.8.2 The Maclaurin and Jacobi ellipsoids -- 2.8.3 Rotating polytropes -- 2.9 Bibliographical notes -- 3 Rotating stars -- 3.1 Introduction -- 3.2 Basic concepts -- 3.2.1 The Poincaré-Wavre theorem -- 3.3 Some tentative solutions -- 3.3.1 The case of radiative equilibrium -- 3.3.2 The case of convective equilibrium -- 3.4 The dynamical instabilities -- 3.4.1 An energy principle -- 3.4.2 The Solberg-Høiland conditions -- 3.4.3 Nonaxisymmetric motions -- 3.5 The thermal instabilities -- 3.6 The eddy-mean flow interaction -- 3.7 Bibliographical notes -- 4 Meridional circulation -- 4.1 Introduction -- 4.2 A frictionless solution.
505 8 _a4.2.1 Sweet's meridional circulation -- 4.2.2 The classical objections -- 4.3 A consistent first-order solution -- 4.3.1 The linear case… -- 4.3.2 The nonlinear case… -- 4.4 A consistent second-order solution -- 4.4.1 Answer to the classical objections -- 4.5 Meridional circulation in a cooling white dwarf -- 4.6 Meridional circulation in a close-binary component -- 4.6.1 The tidally driven currents -- 4.6.2 The reflection effect in close binaries -- 4.7 Meridional circulation in a magnetic star -- 4.7.1 The magnetically driven currents -- 4.7.2 Circulation, rotation, and magnetic fields -- 4.8 Discussion -- 4.9 Bibliographical notes -- 5 Solar rotation -- 5.1 Introduction -- 5.2 Differential rotation in the convection zone -- 5.2.1 Mean-field models -- 5.2.2 Global-convection models -- 5.3 Meridional circulation in the radiative core -- 5.4 Spin-down of the solar interior -- 5.4.1 Rotation and turbulent diffusion -- 5.4.2 Rotation and magnetic fields -- 5.5 Discussion -- 5.6 Bibliographical notes -- 6 The early-type stars -- 6.1 Introduction -- 6.2 Main-sequence models -- 6.2.1 Uniform rotation versus differential rotation -- 6.2.2 Effects of rotation on the observable parameters -- 6.3 Axial rotation along the upper main sequence -- 6.3.1 Rotation in open clusters -- 6.3.2 The angular momentum diagram -- 6.3.3 The rotational velocity distributions -- 6.3.4 Rotation of Be and shell stars -- 6.3.5 Rotation of Am and Ap stars -- 6.4 Circulation, rotation, and diffusion -- 6.5 Rotation of evolved stars -- 6.6 Bibliographical notes -- 7 The late-type stars -- 7.1 Introduction -- 7.2 Schatzman's braking mechanism -- 7.3 Rotation of T Tauri and cluster stars -- 7.4 Rotational evolution of low-mass stars -- 7.4.1 T Tauri stars and accretion disks -- 7.4.2 Rotational evolution models -- 7.5 Bibliographical notes -- 8 Tidal interaction -- 8.1 Introduction.
505 8 _a8.2 The tidal-torque mechanism -- 8.2.1 Darwin's weak-friction model -- 8.2.2 Application to late-type binaries -- 8.3 The resonance mechanism -- 8.3.1 Application to early-type binaries -- 8.4 The hydrodynamical mechanism -- 8.4.1 The spin-up and spin-down of a rotating fluid -- 8.4.2 Ekman pumping in a tidally distorted star -- 8.4.3 The characteristic times -- 8.4.4 Pseudo-synchronization and orbital circularization -- 8.5 Contact binaries: The astrostrophic balance -- 8.6 Discussion -- 8.7 Bibliographical notes -- Epilogue -- Subject index -- Author index.
520 _aThis authoritative volume, first published in 2000, provides the definitive reference on stellar rotation, combining theory and observation.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aStars--Rotation.
655 4 _aElectronic books.
700 1 _aKing, Andrew.
700 1 _aLin, Douglas.
700 1 _aMaran, Stephen P.
700 1 _aPringle, Jim.
700 1 _aWard, Martin.
776 0 8 _iPrint version:
_aTassoul, Jean-Louis
_tStellar Rotation
_dCambridge : Cambridge University Press,c2000
_z9780521772181
797 2 _aProQuest (Firm)
830 0 _aCambridge Astrophysics
856 4 0 _uhttps://ebookcentral.proquest.com/lib/buse-ebooks/detail.action?docID=143914
_zClick to View
999 _c33197
_d33197