Quantum Mechanics : Theory and Experiment.
Material type: TextPublisher: New York : Oxford University Press USA - OSO, 2012Copyright date: ©2012Description: 1 online resource (529 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780199798230Subject(s): Mechanics -- Textbooks | Quantum theory -- TextbooksGenre/Form: Electronic books.Additional physical formats: Print version:: Quantum Mechanics : Theory and ExperimentDDC classification: 530.12 LOC classification: QC174.12 -- .B43 2012ebOnline resources: Click to ViewCover -- Contents -- Table of Symbols -- Preface -- 1 MATHEMATICAL PRELIMINARIES -- 1.1 Probability and Statistics -- 1.2 Linear Algebra -- 1.3 References -- 1.4 Problems -- 2 CLASSICAL DESCRIPTION OF POLARIZATION -- 2.1 Polarization -- 2.2 Birefringence -- 2.3 Modifying the Polarization -- 2.4 Jones Vectors and Jones Matrices -- 2.5 Polarization Interferometer -- 2.6 References -- 2.7 Problems -- Complement to Chapter 2: 2.A: Coherence and Interference -- 3 QUANTUM STATES -- 3.1 State Vectors -- 3.2 Basis States -- 3.3 Other States -- 3.4 Probabilities -- 3.5 Complex Probability Amplitudes -- 3.6 Row and Column Vector Notation -- 3.7 Interference -- 3.8 Problems -- 4 OPERATORS -- 4.1 Operators -- 4.2 The Adjoint Operator -- 4.3 The Projection Operator -- 4.4 The Matrix Representation of Operators -- 4.5 Changing Bases -- 4.6 Hermitian Operators -- 4.7 References -- 4.8 Problems -- Complement to Chapter 4: 4.A: Similarity Transformations -- 5 MEASUREMENT -- 5.1 Measuring Polarization -- 5.2 The Postulates of Quantum Mechanics -- 5.3 Expectation Values -- 5.4 Operators and Measurements -- 5.5 Commutation and Indeterminacy Relations -- 5.6 Complementarity -- 5.7 References -- 5.8 Problems -- Complement to Chapter 5: 5.A: ''Measuring'' a Quantum State -- 6 SPIN-1/2 -- 6.1 The Stern-Gerlach Experiment -- 6.2 Spin States -- 6.3 More Spin States -- 6.4 Commutation Relations -- 6.5 Particle Interference -- 6.6 References -- 6.7 Problems -- 7 ANGULAR MOMENTUM AND ROTATION -- 7.1 Commuting Observables -- 7.2 Angular Momentum Operators -- 7.3 Eigenvalues and Eigenstates -- 7.4 Spin-1 -- 7.5 Rotation -- 7.6 Spin of a Photon -- 7.7 References -- 7.8 Problems -- Complements to Chapter 7: 7.A: Compatible Observables -- 7.B: Eigenvalues and Eigenstates of Angular Momentum -- 8 TWO-PARTICLE SYSTEMS AND ENTANGLEMENT -- 8.1 Pairs of Photons -- 8.2 Entangled States.
8.3 Mixed States -- 8.4 Testing Local Realism -- 8.5 References -- 8.6 Problems -- Complements to Chapter 8: 8.A: The Density Operator -- 8.B: The Bell-Clauser-Horne Inequality -- 8.C: Two Spin-1/2 Particles -- 9 TIME EVOLUTION AND THE SCHRÖDINGER EQUATION -- 9.1 The Time-Evolution Operator -- 9.2 The Schrödinger Equation -- 9.3 Expectation Values -- 9.4 Spin-1/2 Particle in a Magnetic Field -- 9.5 Neutrino Oscillations -- 9.6 References -- 9.7 Problems -- Complement to Chapter 9: 9.A: Magnetic Resonance -- 10 POSITION AND MOMENTUM -- 10.1 Position -- 10.2 Momentum -- 10.3 The Momentum Basis -- 10.4 Problems -- Complement to Chapter 10: 10.A: Useful Mathematics -- 11 WAVE MECHANICS AND THE SCHRÖDINGER EQUATION -- 11.1 The Schrödinger Equation Revisited -- 11.2 Constant Potential-the Free Particle -- 11.3 Potential Step -- 11.4 Tunneling -- 11.5 Infinite Square Well -- 11.6 References -- 11.7 Problems -- Complement to Chapter 11: 11.A: Free Particle Propagation -- 12 THE HARMONIC OSCILLATOR -- 12.1 Why Study the Harmonic Oscillator? -- 12.2 Creation, Annihilation, and Number Operators -- 12.3 Wave Functions -- 12.4 Fock States and Photons -- 12.5 Coherent States -- 12.6 References -- 12.7 Problems -- Complement to Chapter 12: 12.A: Solving the Schrödinger Equation Directly -- 13 WAVE MECHANICS IN THREE DIMENSIONS -- 13.1 The Schrödinger Equation in Three Dimensions -- 13.2 Central Potentials -- 13.3 Orbital Angular Momentum -- 13.4 The Hydrogen Atom -- 13.5 Multielectron Atoms -- 13.6 References -- 13.7 Problems -- Complements to Chapter 13: 13.A: Quantum Dots -- 13.B: Series Solution to the Radial Equation -- 14 TIME-INDEPENDENT PERTURBATION THEORY -- 14.1 Nondegenerate Theory -- 14.2 Degenerate Theory -- 14.3 Fine Structure of Hydrogen -- 14.4 Hyperfine Structure of Hydrogen -- 14.5 The Zeeman Effect -- 14.6 References -- 14.7 Problems.
15 TIME-DEPENDENT PERTURBATION THEORY -- 15.1 Time Evolution of the State -- 15.2 Sinusoidal Perturbations -- 15.3 Atoms and Fields -- 15.4 The Photoelectric Effect -- 15.5 References -- 15.6 Problems -- Complement to Chapter 15: 15.A: Einstein's A and B Coefficients -- 16 QUANTUM FIELDS -- 16.1 The Schrödinger and Heisenberg Pictures of Quantum Mechanics -- 16.2 The Field Hamiltonian -- 16.3 Field Operators -- 16.4 Field States -- 16.5 Fully Quantum Mechanical Atom-Field Interactions -- 16.6 Quantum Theory of Photoelectric Detection -- 16.7 Beam Splitters -- 16.8 References -- 16.9 Problems -- Complement to Chapter 16: 16.A: Second-Order Coherence and the Grangier Experiment -- 17 QUANTUM INFORMATION -- 17.1 Qubits and Ebits -- 17.2 Quantum Cryptography -- 17.3 The No-Cloning Theorem -- 17.4 Quantum Teleportation -- 17.5 Quantum Computing -- 17.6 References -- 17.7 Problems -- LABORATORIES -- Getting Started -- Before Lab -- Important Laboratory Safety Tips -- LAB 1 SPONTANEOUS PARAMETRIC DOWNCONVERSION -- Lab Ticket -- L1.1 Introduction -- L1.2 Aligning the Crystal -- L1.3 Aligning Detector A -- L1.4 Aligning Detector B -- L1.5 Angular Correlations - Momentum Conservation -- L1.6 Polarization -- L1.7 Timing -- L1.8 References -- LAB 2 ''PROOF'' OF THE EXISTENCE OF PHOTONS -- Lab Ticket -- L2.1 Introduction -- L2.2 Theory -- L2.3 Aligning the Irises and the Beam Splitter -- L2.4 Aligning the B' Detector -- L2.5 Measuring g([sup(2)])(0) for a Single-Photon State -- L2.6 Two-Detector Measurement of g([sup(2)])(0) -- L2.7 References -- LAB 3 SINGLE-PHOTON INTERFERENCE -- Lab Ticket -- L3.1 Introduction -- L3.2 Aligning the Polarization Interferometer -- L3.3 Equalizing the Path Lengths -- L3.4 The Polarization Interferometer -- L3.5 Single-Photon Interference and the Quantum Eraser -- L3.6 "Experiment 6" -- L3.7 Particles and Waves -- L3.8 References.
LAB 4 QUANTUM STATE MEASUREMENT -- Lab Ticket -- L4.1 Introduction -- L4.2 Alignment -- L4.3 Measurement of Linear Polarization States -- L4.4 Measurement of Circular and Elliptical Polarization States -- L4.5 References -- LAB 5 TESTING LOCAL REALISM -- Lab Ticket -- L5.1 Introduction -- L5.2 Theory -- L5.3 Alignment -- L5.4 Creating the Bell State -- L5.5 Exploring Quantum Correlations--Entangled States and Mixed States -- L5.6 Testing the CHSH Inequality -- L5.7 Measuring H -- L5.8 Optimizing Your Results -- L5.9 Last Experiment -- L5.10 References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Y -- Z.
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. The book also includes discussions of quantum measurement, entanglement, quantum field theory and quantum information.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.