Fundamentals of Numerical Weather Prediction.

By: Coiffier, JeanMaterial type: TextTextPublisher: Cambridge : Cambridge University Press, 2011Copyright date: ©2011Description: 1 online resource (364 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781139185769Subject(s): Numerical weather forecasting | Weather forecasting -- Mathematical modelsGenre/Form: Electronic books.Additional physical formats: Print version:: Fundamentals of Numerical Weather PredictionDDC classification: 551.634 LOC classification: QC996 .C6513 2011Online resources: Click to View
Contents:
Cover -- Fundamentals of Numerical Weather Prediction -- Title -- Copyright -- Contents -- Foreword to the French Edition -- Foreword to the English Edition -- Preface -- Acknowledgments -- Partial list of symbols -- Latin letters -- Gothic letters -- Greek letters -- Generalized vectors, matrices, and operators -- Various mathematical notations -- 1 Half a century of numerical weather prediction -- 1.1 Introduction -- 1.2 The early days -- 1.3 Half a century of continual progress -- 1.3.1 The need to be fast and accurate -- 1.3.2 The use of filtered equations -- 1.3.3 Back to the primitive equations and initialization -- 1.3.4 Global processing and the spectral method -- 1.3.5 Limited area models -- 1.3.6 Algorithms for an increased time step -- 1.3.7 The move to nonhydrostatic equations -- 1.3.8 Physical processes -- 1.3.9 Objective analysis and data assimilation -- 1.4 Developments in computing -- 1.4.1 Computing power accompanies progress -- 1.4.2 From the ENIAC to scientific mainframes -- 1.4.3 Single and multiprocessor vector machines -- 1.4.4 Massively parallel computers -- 1.4.5 Software advances -- 2 Weather prediction equations -- 2.1 Introduction -- 2.2 The simplifications and the corresponding models -- 2.2.1 The general form of the equations -- 2.2.2 The traditional approximation and the nonhydrostatic equations -- 2.2.3 The hydrostatic assumption and the primitive equations -- 2.2.4 The primitive equations in the pressure coordinates -- 2.2.5 The shallow water model equations -- 2.2.6 The zero divergence model equation -- 2.3 The equations in various systems of coordinates -- 2.3.1 Vector operators in curvilinear coordinates -- 2.3.2 The equations in geographical coordinates -- 2.3.3 Formulation of the equations for a conformal projection -- 2.4 Some typical conformal projections -- 2.4.1 Polar stereographic projection.
2.4.2 The Mercator projection -- 2.4.3 The Lambert conical projection -- 2.4.4 The conformal transformation of the sphere onto itself -- 3 Finite differences -- 3.1 Introduction -- 3.2 The finite difference method -- 3.2.1 Computational principle, order of accuracy -- 3.2.2 Common notations for finite differences -- 3.2.3 The accuracy of finite difference schemes -- 3.3 The grids used and their properties -- 3.3.1 The primitive equations in conformal projection -- 3.3.2 The A-type grid -- 3.3.3 The B-type grid -- 3.3.4 The C-type grid -- 3.3.5 The D'-type staggered grid (Eliassen grid) -- 3.3.6 The properties of the various grids -- 3.3.7 Spatial filtering -- 3.4 Conclusion -- 4 Spectral methods -- 4.1 Introduction -- 4.2 Using series expansions in terms of functions -- 4.2.1 General remarks on Galerkin methods -- 4.2.2 Using finite elements for the advection equation -- 4.3 Spectral method on the sphere -- 4.3.1 General remarks -- 4.3.2 The basis of surface spherical harmonics -- 4.3.3 The properties of spherical harmonics -- 4.3.4 Expanding a spherical field -- 4.3.5 Truncating the expansion -- 4.3.6 Calculating linear terms and application to wind calculation -- 4.3.7 Calculating nonlinear terms -- 4.3.8 Practical implementation of the spectral method -- 4.4 Spectral method on a doubly periodic domain -- 4.4.1 Constructing a doubly periodic domain -- 4.4.2 Basis functions -- 4.4.3 Elliptical truncation -- 4.4.4 Calculating linear terms -- 4.4.5 Calculating nonlinear terms -- 4.4.6 The advantage of the method -- 5 The effects of discretization -- 5.1 Introduction -- 5.2 The linearized barotropic model -- 5.2.1 The equations for the perturbations -- 5.2.2 The analytical solutions of the linearized model -- 5.3 Effect of horizontal discretization -- 5.3.1 General principle -- 5.3.2 Application to the various grids.
5.4 Various time integration schemes -- 5.4.1 The Euler explicit scheme -- 5.4.2 The centred explicit scheme -- 5.4.3 The centred semi-implicit scheme -- 5.4.4 The centred semi-Lagrangian semi-implicit scheme -- 5.4.4.1 Implementation with perfect interpolation -- 5.4.4.2 Implicit treatment of the Coriolis parameter -- 5.4.4.3 The effects of interpolation in the semi-Lagrangian scheme -- 5.5 Time filtering -- 5.6 Effect of spatial discretization on stability -- 5.6.1 The case of finite difference models -- 5.6.2 The case of spectral models -- 6 Barotropic models -- 6.1 Barotropic models using the vorticity equation -- 6.1.1 The zero divergence model -- 6.1.2 Introducing a divergence term -- 6.1.3 Nonlinear instability and how to prevent it -- 6.2 The shallow water barotropic model -- 6.2.1 The properties of the shallow water model -- 6.2.2 Discretization of the equations on a C grid -- 6.2.3 The centred explicit scheme -- 6.2.4 The centred semi-implicit scheme -- 6.2.5 Semi-Lagrangian schemes -- 6.2.5.1 The centred scheme and determination of the particle origin point -- 6.2.5.2 Variants of semi-Lagrangian processing -- 6.3 Spectral processing of the shallow water model -- 6.3.1 Formulation of the equations -- 6.3.2 Semi-implicit processing -- 6.3.3 Semi-Lagrangian processing -- 6.4 Practical use of the shallow water model -- 7 Baroclinic model equations -- 7.1 Introduction -- 7.2 Introducing a general vertical coordinate -- 7.2.1 The transformation formulas -- 7.2.2 The total derivative expression -- 7.3 Application to the primitive equations -- 7.3.1 The hydrostatic equation -- 7.3.2 The pressure force term -- 7.3.3 The continuity equation -- 7.3.4 The surface pressure tendency equation -- 7.3.5 The vertical velocity equation -- 7.4 Various vertical coordinates -- 7.4.1 The drawbacks of the pressure coordinate -- 7.4.2 The sigma coordinate.
7.4.3 The progressive hybrid coordinate -- 7.5 Generalization to nonhydrostatic equations -- 7.5.1 The role of 'hydrostatic pressure' -- 7.5.2 The normalized 'hydrostatic pressure' hybrid coordinate -- 7.5.3 A comprehensive synthetic formulation of the equations -- 7.6 Conservation properties of the equations -- 7.6.1 The expression of global parameters -- 7.6.2 Conservation of mass -- 7.6.3 Conservation of angular momentum -- 7.6.4 The conservation of energy -- 7.7 Conclusion -- 8 Some baroclinic models -- 8.1 Introduction -- 8.2 The context of discretization -- 8.2.1 The equations -- 8.2.2 The layers, levels, and positions of variables -- 8.3 Vertical discretization of the equations -- 8.3.1 Vertical advection -- 8.3.2 Surface pressure evolution equation -- 8.3.3 Diagnostic equation for generalized vertical velocity -- 8.3.4 Diagnostic equation for geopotential -- 8.3.5 Pressure force term -- 8.3.6 Energy conversion term -- 8.3.7 Location of the pressure levels -- 8.3.8 Alternative solutions for vertical discretization -- 8.4 A sigma coordinate and finite difference model -- 8.4.1 Simplifications with the pure sigma coordinate -- 8.4.2 The location of variables on the C grid -- 8.4.3 The discretized equations -- 8.4.4 Explicit time integration of the model -- 8.4.5 Implementation of semi-implicit time integration -- 8.5 Formalization of the semi-implicit method -- 8.5.1 General formulation of the algorithm -- 8.5.2 Interpretation of the semi-implicit method -- 8.6 A variable resolution spectral model -- 8.6.1 The equations -- 8.6.2 Explicit time integration of the model -- 8.6.3 Implementation of semi-implicit time integration -- 8.7 Lagrangian advection in baroclinic models -- 9 Physical parameterizations -- 9.1 Introduction -- 9.2 Equations for a multi-phase moist atmosphere -- 9.2.1 Schematic framework of interaction among constituents.
9.2.2 The equations in conservative form -- 9.3 Radiation -- 9.3.1 General points -- 9.3.2 Allowance for the effects of radiation in the atmosphere -- 9.3.3 Two-flux approximation and integration over a layer -- 9.3.4 Calculating optical depths and spectral integration -- 9.3.4.1 The case of gases -- 9.3.4.2 The case of grey bodies -- 9.3.5 Integration over optical path and flux calculation -- 9.3.5.1 The case of solar fluxes -- 9.3.5.2 The case of thermal fluxes -- 9.3.6 Processing of clouds -- 9.3.6.1 The random overlap hypothesis -- 9.3.6.2 The maximum-random overlap hypothesis -- 9.3.6.3 Calculation of optical depths allowing for cloudiness -- 9.3.6.4 Calculating cloudiness -- 9.4 Boundary layer and vertical diffusion -- 9.4.1 General points -- 9.4.2 Parameterization of turbulent surface fluxes -- 9.4.3 Planetary boundary layer fluxes -- 9.4.4 Allowance for shallow convection -- 9.4.5 The evolution of surface parameters -- 9.4.5.1 Evolution of surface temperature -- 9.4.5.2 Evolution of soil moisture -- 9.4.6 Allowance for fluxes, vertical diffusion -- 9.5 Precipitation resolved at the grid scale -- 9.5.1 General points -- 9.5.2 Calculating precipitation in an atmospheric layer -- 9.5.3 Evaporation of precipitation during fall -- 9.5.4 The melting of snow as it falls -- 9.5.5 The calculation process in the various layers -- 9.5.6 The need for more detailed schemes -- 9.6 Convection -- 9.6.1 General points -- 9.6.2 The problem of causality for convection -- 9.6.3 The basic equations -- 9.6.4 The characteristic profiles of the cloud and the influence of microphysics -- 9.6.5 The triggering of instability -- 9.6.6 The closure relation -- 9.6.7 Prospects -- 9.7 Effect of sub-grid orography -- 9.7.1 The wave momentum flux induced by orography -- 9.7.2 Effects of resonance and trapping of the wave -- 9.7.3 Consequences of partial blocking of flow.
9.8 Horizontal diffusion.
Summary: A practical, accessible overview of weather forecasting and climate modeling techniques for graduate students, researchers and professionals in atmospheric science.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Fundamentals of Numerical Weather Prediction -- Title -- Copyright -- Contents -- Foreword to the French Edition -- Foreword to the English Edition -- Preface -- Acknowledgments -- Partial list of symbols -- Latin letters -- Gothic letters -- Greek letters -- Generalized vectors, matrices, and operators -- Various mathematical notations -- 1 Half a century of numerical weather prediction -- 1.1 Introduction -- 1.2 The early days -- 1.3 Half a century of continual progress -- 1.3.1 The need to be fast and accurate -- 1.3.2 The use of filtered equations -- 1.3.3 Back to the primitive equations and initialization -- 1.3.4 Global processing and the spectral method -- 1.3.5 Limited area models -- 1.3.6 Algorithms for an increased time step -- 1.3.7 The move to nonhydrostatic equations -- 1.3.8 Physical processes -- 1.3.9 Objective analysis and data assimilation -- 1.4 Developments in computing -- 1.4.1 Computing power accompanies progress -- 1.4.2 From the ENIAC to scientific mainframes -- 1.4.3 Single and multiprocessor vector machines -- 1.4.4 Massively parallel computers -- 1.4.5 Software advances -- 2 Weather prediction equations -- 2.1 Introduction -- 2.2 The simplifications and the corresponding models -- 2.2.1 The general form of the equations -- 2.2.2 The traditional approximation and the nonhydrostatic equations -- 2.2.3 The hydrostatic assumption and the primitive equations -- 2.2.4 The primitive equations in the pressure coordinates -- 2.2.5 The shallow water model equations -- 2.2.6 The zero divergence model equation -- 2.3 The equations in various systems of coordinates -- 2.3.1 Vector operators in curvilinear coordinates -- 2.3.2 The equations in geographical coordinates -- 2.3.3 Formulation of the equations for a conformal projection -- 2.4 Some typical conformal projections -- 2.4.1 Polar stereographic projection.

2.4.2 The Mercator projection -- 2.4.3 The Lambert conical projection -- 2.4.4 The conformal transformation of the sphere onto itself -- 3 Finite differences -- 3.1 Introduction -- 3.2 The finite difference method -- 3.2.1 Computational principle, order of accuracy -- 3.2.2 Common notations for finite differences -- 3.2.3 The accuracy of finite difference schemes -- 3.3 The grids used and their properties -- 3.3.1 The primitive equations in conformal projection -- 3.3.2 The A-type grid -- 3.3.3 The B-type grid -- 3.3.4 The C-type grid -- 3.3.5 The D'-type staggered grid (Eliassen grid) -- 3.3.6 The properties of the various grids -- 3.3.7 Spatial filtering -- 3.4 Conclusion -- 4 Spectral methods -- 4.1 Introduction -- 4.2 Using series expansions in terms of functions -- 4.2.1 General remarks on Galerkin methods -- 4.2.2 Using finite elements for the advection equation -- 4.3 Spectral method on the sphere -- 4.3.1 General remarks -- 4.3.2 The basis of surface spherical harmonics -- 4.3.3 The properties of spherical harmonics -- 4.3.4 Expanding a spherical field -- 4.3.5 Truncating the expansion -- 4.3.6 Calculating linear terms and application to wind calculation -- 4.3.7 Calculating nonlinear terms -- 4.3.8 Practical implementation of the spectral method -- 4.4 Spectral method on a doubly periodic domain -- 4.4.1 Constructing a doubly periodic domain -- 4.4.2 Basis functions -- 4.4.3 Elliptical truncation -- 4.4.4 Calculating linear terms -- 4.4.5 Calculating nonlinear terms -- 4.4.6 The advantage of the method -- 5 The effects of discretization -- 5.1 Introduction -- 5.2 The linearized barotropic model -- 5.2.1 The equations for the perturbations -- 5.2.2 The analytical solutions of the linearized model -- 5.3 Effect of horizontal discretization -- 5.3.1 General principle -- 5.3.2 Application to the various grids.

5.4 Various time integration schemes -- 5.4.1 The Euler explicit scheme -- 5.4.2 The centred explicit scheme -- 5.4.3 The centred semi-implicit scheme -- 5.4.4 The centred semi-Lagrangian semi-implicit scheme -- 5.4.4.1 Implementation with perfect interpolation -- 5.4.4.2 Implicit treatment of the Coriolis parameter -- 5.4.4.3 The effects of interpolation in the semi-Lagrangian scheme -- 5.5 Time filtering -- 5.6 Effect of spatial discretization on stability -- 5.6.1 The case of finite difference models -- 5.6.2 The case of spectral models -- 6 Barotropic models -- 6.1 Barotropic models using the vorticity equation -- 6.1.1 The zero divergence model -- 6.1.2 Introducing a divergence term -- 6.1.3 Nonlinear instability and how to prevent it -- 6.2 The shallow water barotropic model -- 6.2.1 The properties of the shallow water model -- 6.2.2 Discretization of the equations on a C grid -- 6.2.3 The centred explicit scheme -- 6.2.4 The centred semi-implicit scheme -- 6.2.5 Semi-Lagrangian schemes -- 6.2.5.1 The centred scheme and determination of the particle origin point -- 6.2.5.2 Variants of semi-Lagrangian processing -- 6.3 Spectral processing of the shallow water model -- 6.3.1 Formulation of the equations -- 6.3.2 Semi-implicit processing -- 6.3.3 Semi-Lagrangian processing -- 6.4 Practical use of the shallow water model -- 7 Baroclinic model equations -- 7.1 Introduction -- 7.2 Introducing a general vertical coordinate -- 7.2.1 The transformation formulas -- 7.2.2 The total derivative expression -- 7.3 Application to the primitive equations -- 7.3.1 The hydrostatic equation -- 7.3.2 The pressure force term -- 7.3.3 The continuity equation -- 7.3.4 The surface pressure tendency equation -- 7.3.5 The vertical velocity equation -- 7.4 Various vertical coordinates -- 7.4.1 The drawbacks of the pressure coordinate -- 7.4.2 The sigma coordinate.

7.4.3 The progressive hybrid coordinate -- 7.5 Generalization to nonhydrostatic equations -- 7.5.1 The role of 'hydrostatic pressure' -- 7.5.2 The normalized 'hydrostatic pressure' hybrid coordinate -- 7.5.3 A comprehensive synthetic formulation of the equations -- 7.6 Conservation properties of the equations -- 7.6.1 The expression of global parameters -- 7.6.2 Conservation of mass -- 7.6.3 Conservation of angular momentum -- 7.6.4 The conservation of energy -- 7.7 Conclusion -- 8 Some baroclinic models -- 8.1 Introduction -- 8.2 The context of discretization -- 8.2.1 The equations -- 8.2.2 The layers, levels, and positions of variables -- 8.3 Vertical discretization of the equations -- 8.3.1 Vertical advection -- 8.3.2 Surface pressure evolution equation -- 8.3.3 Diagnostic equation for generalized vertical velocity -- 8.3.4 Diagnostic equation for geopotential -- 8.3.5 Pressure force term -- 8.3.6 Energy conversion term -- 8.3.7 Location of the pressure levels -- 8.3.8 Alternative solutions for vertical discretization -- 8.4 A sigma coordinate and finite difference model -- 8.4.1 Simplifications with the pure sigma coordinate -- 8.4.2 The location of variables on the C grid -- 8.4.3 The discretized equations -- 8.4.4 Explicit time integration of the model -- 8.4.5 Implementation of semi-implicit time integration -- 8.5 Formalization of the semi-implicit method -- 8.5.1 General formulation of the algorithm -- 8.5.2 Interpretation of the semi-implicit method -- 8.6 A variable resolution spectral model -- 8.6.1 The equations -- 8.6.2 Explicit time integration of the model -- 8.6.3 Implementation of semi-implicit time integration -- 8.7 Lagrangian advection in baroclinic models -- 9 Physical parameterizations -- 9.1 Introduction -- 9.2 Equations for a multi-phase moist atmosphere -- 9.2.1 Schematic framework of interaction among constituents.

9.2.2 The equations in conservative form -- 9.3 Radiation -- 9.3.1 General points -- 9.3.2 Allowance for the effects of radiation in the atmosphere -- 9.3.3 Two-flux approximation and integration over a layer -- 9.3.4 Calculating optical depths and spectral integration -- 9.3.4.1 The case of gases -- 9.3.4.2 The case of grey bodies -- 9.3.5 Integration over optical path and flux calculation -- 9.3.5.1 The case of solar fluxes -- 9.3.5.2 The case of thermal fluxes -- 9.3.6 Processing of clouds -- 9.3.6.1 The random overlap hypothesis -- 9.3.6.2 The maximum-random overlap hypothesis -- 9.3.6.3 Calculation of optical depths allowing for cloudiness -- 9.3.6.4 Calculating cloudiness -- 9.4 Boundary layer and vertical diffusion -- 9.4.1 General points -- 9.4.2 Parameterization of turbulent surface fluxes -- 9.4.3 Planetary boundary layer fluxes -- 9.4.4 Allowance for shallow convection -- 9.4.5 The evolution of surface parameters -- 9.4.5.1 Evolution of surface temperature -- 9.4.5.2 Evolution of soil moisture -- 9.4.6 Allowance for fluxes, vertical diffusion -- 9.5 Precipitation resolved at the grid scale -- 9.5.1 General points -- 9.5.2 Calculating precipitation in an atmospheric layer -- 9.5.3 Evaporation of precipitation during fall -- 9.5.4 The melting of snow as it falls -- 9.5.5 The calculation process in the various layers -- 9.5.6 The need for more detailed schemes -- 9.6 Convection -- 9.6.1 General points -- 9.6.2 The problem of causality for convection -- 9.6.3 The basic equations -- 9.6.4 The characteristic profiles of the cloud and the influence of microphysics -- 9.6.5 The triggering of instability -- 9.6.6 The closure relation -- 9.6.7 Prospects -- 9.7 Effect of sub-grid orography -- 9.7.1 The wave momentum flux induced by orography -- 9.7.2 Effects of resonance and trapping of the wave -- 9.7.3 Consequences of partial blocking of flow.

9.8 Horizontal diffusion.

A practical, accessible overview of weather forecasting and climate modeling techniques for graduate students, researchers and professionals in atmospheric science.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha