Cooperative Communications : Hardware, Channel and PHY.
Material type: TextPublisher: New York : John Wiley & Sons, Incorporated, 2010Copyright date: ©2009Edition: 1st edDescription: 1 online resource (465 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780470740064Subject(s): Ad hoc networks (Computer networks) | Cognitive radio networks | Internetworking (Telecommunication) | MIMO systems | Multiuser detection (Telecommunication)Genre/Form: Electronic books.Additional physical formats: Print version:: Cooperative Communications : Hardware, Channel and PHYDDC classification: 621.384 LOC classification: TK5103.4815.D64 2010Online resources: Click to ViewCooperative Communications -- Contents -- Preface -- Abbreviations -- Functions -- Symbols -- 1 Introduction -- 1.1 Book Structure -- 1.2 Quick Introduction -- 1.2.1 Channel -- 1.2.2 Typical Gains -- 1.2.3 Canonical Architectures -- 1.3 Application Scenarios -- 1.3.1 Cellular Capacity and Coverage Extension -- 1.3.2 WLAN Capacity and Coverage Extension -- 1.3.3 Vehicle-to-Vehicle Communication -- 1.3.4 Wireless Sensor Networks -- 1.4 Pros and Cons of Cooperation -- 1.4.1 Advantages of Cooperation -- 1.4.2 Disadvantages of Cooperation -- 1.4.3 System Tradeoffs -- 1.5 Cooperative Performance Bounds -- 1.5.1 Capacity Gains -- 1.5.1.1 Ergodic Channel -- 1.5.1.2 Capacity Gains -- 1.5.2 Rate Outage Gains -- 1.5.2.1 Nonergodic Channel -- 1.5.2.2 Rate Outage Gains -- 1.5.3 Diversity-Multiplexing Tradeoff -- 1.6 Definitions and Terminology -- 1.6.1 Relaying Node -- 1.6.1.1 Node Behaviors -- 1.6.1.2 Transparent Relaying Protocols -- 1.6.1.3 Regenerative Relaying Protocols -- 1.6.2 Multiple Access Resolution -- 1.6.2.1 Duplexing Methods -- 1.6.2.2 Multiple Access Protocols -- 1.6.2.3 Resource Allocation Strategies -- 1.6.2.4 Typical Access Configurations -- 1.6.3 Cooperative Networking Aspects -- 1.6.3.1 Canonical Information Flows -- 1.6.3.2 Important Design Parameters -- 1.6.4 System Analysis and Synthesis -- 1.6.4.1 Performance Analysis -- 1.6.4.2 System Synthesis -- 1.7 Background and Milestones -- 1.7.1 First Key Milestones -- 1.7.2 Supportive Relaying -- 1.7.3 Cooperative Relaying -- 1.7.4 Space-Time Relaying -- 1.8 Concluding Remarks -- 2 Wireless Relay Channel -- 2.1 Introductory Note -- 2.1.1 Chapter Contents -- 2.1.2 Choice of Notation -- 2.2 General Characteristics and Trends -- 2.2.1 Propagation Principles -- 2.2.1.1 Wave Properties -- 2.2.1.2 Propagation Mechanisms -- 2.2.1.3 Signal Distortions -- 2.2.2 Propagation Modeling -- 2.2.2.1 Pathloss.
2.2.2.2 Shadowing -- 2.2.2.3 Fading -- 2.2.3 Channel Modeling -- 2.2.3.1 Important Parameters -- 2.2.3.2 Selectivity versus Non-Selectivity -- 2.2.3.3 Example Fading Cases -- 2.2.4 Quick Introduction to Regenerative Relay Channels -- 2.2.4.1 System Assumptions -- 2.2.4.2 Key Channel Parameters -- 2.2.4.3 Impact on Fading Behavior -- 2.2.4.4 Impact on End-to-End Performance -- 2.2.5 Quick Introduction to Transparent Relay Channels -- 2.2.5.1 System Assumptions -- 2.2.5.2 Key Channel Parameters -- 2.2.5.3 Impact on Fading Behavior -- 2.2.5.4 Impact on End-to-End Performance -- 2.3 Regenerative Relaying Channel -- 2.3.1 Propagation Modeling -- 2.3.1.1 Pathloss -- 2.3.1.2 Shadowing -- 2.3.1.3 Fading -- 2.3.2 Envelope and Power Fading Statistics -- 2.3.2.1 PDF Transformation -- 2.3.2.2 Fading Distributions -- 2.3.2.3 Relationship with SNR -- 2.3.3 Temporal Fading Characteristics -- 2.3.3.1 System Assumptions -- 2.3.3.2 Canonical Scenario -- 2.3.3.3 Nonisotropic Scattering Scenario -- 2.3.3.4 Ricean Fading Scenario -- 2.3.4 Spatial-Temporal Fading Characteristics -- 2.3.4.1 System Assumptions -- 2.3.4.2 Canonical Scenario -- 2.3.4.3 Case Studies -- 2.3.5 Spectral-Spatial-Temporal Fading Characteristics -- 2.3.5.1 System Assumptions -- 2.3.5.2 Canonical Scenario -- 2.3.5.3 Case Studies -- 2.3.6 Simulating Regenerative Fading Channels -- 2.3.6.1 Typical Modeling Approaches -- 2.3.6.2 MIMO Narrowband Relay Channels -- 2.3.6.3 MIMO Wideband Relay Channels -- 2.3.7 Measurements and Empirical Models -- 2.3.7.1 Mobile-to-Mobile Measurement Campaigns -- 2.3.7.2 Empirical Outdoors Relay Propagation Models -- 2.3.7.3 Empirical Indoors Relay Propagation Model -- 2.3.8 Estimating Regenerative Fading Channels -- 2.4 Transparent Relaying Channel -- 2.4.1 Propagation Modeling -- 2.4.1.1 Pathloss -- 2.4.1.2 Shadowing -- 2.4.1.3 Fading.
2.4.2 Envelope and Power Fading Statistics -- 2.4.2.1 Cascaded Fading Distributions with Constant Amplification -- 2.4.2.2 Cascaded Fading Distributions with Variable Amplification -- 2.4.2.3 Relationship With SNR -- 2.4.3 Temporal Fading Characteristics -- 2.4.3.1 System Assumptions -- 2.4.3.2 Canonical Scenario -- 2.4.3.3 Nonisotropic Scattering Scenario -- 2.4.3.4 Nakagami Fading Scenario -- 2.4.4 Spatial-Temporal Fading Characteristics -- 2.4.4.1 System Assumptions -- 2.4.4.2 Canonical Scenario -- 2.4.4.3 Case Studies -- 2.4.5 Spectral-Spatial-Temporal Fading Characteristics -- 2.4.6 Simulating Transparent Fading Channels -- 2.4.7 Measurements and Empirical Models -- 2.4.8 Estimating Transparent Fading Channels -- 2.5 Distributed MIMO Channel -- 2.5.1 Problem Reduction -- 2.5.2 Main Design Criteria -- 2.5.3 Macro Diversity Gains -- 2.6 Concluding Remarks -- 3 Transparent Relaying Techniques -- 3.1 Introductory Note -- 3.1.1 Chapter Contents -- 3.1.2 Choice of Notation -- 3.2 Transparent Relaying Protocols -- 3.2.1 Single-Branch Dual-Hop AF -- 3.2.1.1 System Assumptions -- 3.2.1.2 Rayleigh Fading Channels -- 3.2.1.3 Nakagami Fading Channels -- 3.2.2 Single-Branch Multihop AF -- 3.2.2.1 System Assumptions -- 3.2.2.2 Rayleigh Fading Channels -- 3.2.2.3 Nakagami Fading Channels -- 3.2.3 Multibranch Dual-Hop AF -- 3.2.3.1 System Assumptions -- 3.2.3.2 Blind and Semiblind Relays -- 3.2.3.3 CSI-Assisted Relays -- 3.2.4 Multibranch Multihop AF -- 3.2.4.1 System Assumptions -- 3.2.4.2 SISO Topologies -- 3.2.4.3 MIMO Topologies -- 3.3 Transparent Space-Time Processing -- 3.3.1 Distributed Space-Time Block Codes -- 3.3.1.1 Distributed Linear Dispersion Space-Time Codes -- 3.3.1.2 Chernoff Bound of General Communication System -- 3.3.1.3 PEP Upper Bound of the DLD-STC Scheme -- 3.3.2 Distributed Space-Time Trellis Codes -- 3.3.2.1 System Assumptions.
3.3.2.2 Generic Design Criteria -- 3.3.2.3 Protocol-Specific Design Criteria -- 3.3.3 Distributed Spatial Multiplexing -- 3.3.3.1 System Model -- 3.3.3.2 Zero Forcing at the Source and Relay Nodes -- 3.3.3.3 Zero Forcing at the Relay Nodes Only -- 3.3.3.4 Zero Forcing at the Relay and Destination Nodes -- 3.3.3.5 Zero Forcing at the Destination Node Only -- 3.3.4 Distributed Beamforming -- 3.3.4.1 System Model -- 3.3.4.2 Design under Global Sum Power Constraint -- 3.3.4.3 Design under Individual Relay Power Constraint -- 3.3.4.4 Simulation Results -- 3.4 Distributed System Optimization -- 3.4.1 Distributed Adaptive Power Allocation -- 3.4.1.1 System Model -- 3.4.1.2 Distributed Adaptive Power Allocation -- 3.4.1.3 Simulation Results -- 3.4.2 Distributed Relay Selection -- 3.4.2.1 System Model -- 3.4.2.2 Performance Analysis -- 3.4.2.3 Simulation Results -- 3.5 Concluding Remarks -- 4 Regenerative Relaying Techniques -- 4.1 Introductory Note -- 4.1.1 Chapter Contents -- 4.1.2 Choice of Notation -- 4.2 Regenerative Relay Protocols -- 4.2.1 Decode and Forward -- 4.2.1.1 System Model -- 4.2.1.2 Equivalent Model of S-R-D Link -- 4.2.1.3 Simulation Results -- 4.2.2 Compress and Forward -- 4.2.2.1 CF based on Wyner-Ziv Coding -- 4.2.2.2 CF based on Slepian-Wolf Coding -- 4.2.3 Soft Information Relaying -- 4.2.3.1 SIR Based on Soft Symbol Estimation -- 4.2.3.2 SIR Based on Log-Likelihood Ratio -- 4.2.3.3 Mean Square Errors of Signal Estimation at Relay -- 4.2.3.4 Simulation Results -- 4.2.4 Adaptive Relaying -- 4.2.4.1 Adaptive Relay Protocol -- 4.2.4.2 Performance Analysis of ARP -- 4.2.4.3 Performance Evaluations -- 4.2.5 Selective Decode and Forward -- 4.3 Distributed Space-Time Coding -- 4.3.1 Distributed Space-Time Block Coding -- 4.3.1.1 System Model -- 4.3.1.2 Error Rates for Distributed STBCs -- 4.3.1.3 Maximum Throughput for End-to-End Transmission.
4.3.1.4 Full Cooperation at Each Stage -- 4.3.1.5 Partial Cooperation at Each Stage -- 4.3.2 Distributed Space-Time Trellis Coding -- 4.3.2.1 Generator Polynomial Description -- 4.3.2.2 DSTTC with Decode-and-Forward Relaying -- 4.3.2.3 DSTTC with Estimate-and-Forward Relaying -- 4.3.3 Distributed Turbo Coding -- 4.3.3.1 Turbo Encoder Structure -- 4.3.3.2 Distributed Turbo Coding with Perfect DF -- 4.3.3.3 Distributed Turbo Coding with Soft Information Relaying -- 4.3.3.4 Generalized Distributed Turbo Coding -- 4.4 Distributed Network Coding -- 4.4.1 Distributed Network-Channel Coding -- 4.4.1.1 Introduction to LDPC Codes -- 4.4.1.2 Adaptive Network Coded Cooperation -- 4.4.1.3 Simulation Results -- 4.4.2 Network Coding Division Multiplexing -- 4.4.2.1 System Model -- 4.4.2.2 Network Coding Division Multiplexing -- 4.4.2.3 Simulation Results -- 4.5 Concluding Remarks -- 5 Hardware Issues -- 5.1 Introductory Note -- 5.1.1 Chapter Contents -- 5.1.2 Choice of Notation -- 5.2 Analog Hardware Transceivers -- 5.2.1 Important Hardware Components -- 5.2.2 Analog Relaying Architectures -- 5.3 Digital Hardware Transceivers -- 5.3.1 Important Hardware Components -- 5.3.2 Digital Relaying Architectures -- 5.4 Architectural Comparisons -- 5.4.1 Duplex, Relay and Access Protocols -- 5.4.2 Transceiver Complexity -- 5.4.3 Cost Estimates -- 5.5 Complexity of 3G UMTS Voice/HSDPA Relay -- 5.5.1 System Assumptions -- 5.5.1.1 Choice of Scenarios -- 5.5.1.2 Choice of Access Method -- 5.5.1.3 Choice of Link Layer -- 5.5.1.4 Digital Modem Design -- 5.5.2 Algorithmic Complexity -- 5.5.2.1 RRC Matched Filter -- 5.5.2.2 Channel Acquisition -- 5.5.2.3 Channel Estimation -- 5.5.2.4 MRC and MPIC Symbol Detectors -- 5.5.2.5 Outer Modem -- 5.5.3 Power Consumption -- 5.5.3.1 RF Front-End Consumption -- 5.5.3.2 Digital Baseband Consumption.
5.5.3.3 Higher Layers and Peripheral Hardware.
Preface. Abbreviations. Functions. Symbols. 1 Introduction. 1.1 Book Structure. 1.2 Quick Introduction. 1.3 Application Scenarios. 1.4 Pros and Cons of Cooperation. 1.5 Cooperative Performance Bounds. 1.6 Definitions and Terminology. 1.7 Background and Milestones. 1.8 Concluding Remarks. 2 Wireless Relay Channel. 2.1 Introductory Note. 2.2 General Characteristics and Trends. 2.3 Regenerative Relaying Channel. 2.4 Transparent Relaying Channel. 2.5 Distributed MIMO Channel. 2.6 Concluding Remarks. 3 Transparent Relaying Techniques. 3.1 Introductory Note. 3.2 Transparent Relaying Protocols. 3.3 Transparent Space-Time Processing. 3.4 Distributed System Optimization. 3.5 Concluding Remarks. 4 Regenerative Relaying Techniques. 4.1 Introductory Note. 4.2 Regenerative Relay Protocols. 4.3 Distributed Space-Time Coding. 4.4 Distributed Network Coding. 4.5 Concluding Remarks. 5 Hardware Issues. 5.1 Introductory Note. 5.2 Analog Hardware Transceivers. 5.3 Digital Hardware Transceivers. 5.4 Architectural Comparisons. 5.5 Complexity of 3G UMTS Voice/HSDPA Relay. 5.6 Complexity of LTE/WiMAX Relay. 5.7 Hardware Demonstrators. 5.8 Concluding Remarks. 6 Conclusions and Outlook. 6.1 Contributions. 6.2 Real-World Impairments. 6.3 Open Research Problems. 6.4 Business Challenges. References. Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.