Medicinal Chemistry.

By: Kar, AshutoshMaterial type: TextTextPublisher: Daryaganj : New Age International, 2007Copyright date: ©2007Edition: 4th edDescription: 1 online resource (960 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9788122423037Subject(s): Pharmaceutical chemistryGenre/Form: Electronic books.Additional physical formats: Print version:: Medicinal ChemistryLOC classification: RS403.K37 2007Online resources: Click to View
Contents:
Cover -- Preface -- Preface to The Fourth Edition -- Preface to The First Edition -- Contents -- Chapter 1. Drug Design-A Rational Approach -- 1. Introduction -- 2. Analogues and Prodrugs -- 3. Concept of Lead -- 3.1 Examples -- 4. Factors Governing Drug-Design -- 5. Rational Approach to Drug Design -- 5.1. Quantum Mechanical Approach -- 5.2. Molecular Orbital Approach -- 5.3. Molecular Connectivity Approach -- 5.4. Linear Free Energy Approaches -- 6. Drug-Design : The Method of Variation -- 6.1. Drug Design through Disjunction -- 6.2. Drug Design through Conjunction -- 7. Drug Design and Development : An Overview -- 7.1. Preamble -- 7.2. Revolutions in Drug Discovery -- 7.3. Research and Development Strategies -- 8. Molecular Hybridisation -- 9. Rigidity and Flexibility Vs Drug Design -- 9.1. Increased Rigidity -- 9.2. Increased Flexibility -- 10. Tailoring of Drugs -- 11. General Considerations -- Chapter 2. Physical-Chemical Factors and Biological Activities -- 1. Introduction -- 2. Physical Properties -- 2.1. Features Governing Drug Action at Active Site -- 2.2. Structurally Specific Drugs -- 2.3. Structurally Non-specific Drugs -- 2.4. Thermodynamic Activity -- 2.5. Meyer-Overton and Meyer-Hemmi Theory -- 2.6. Ferguson's Theory -- 2.7. Van der Waal's Constants -- 2.8. The Cut-off Point -- 2.9. Steric Factors -- 2.9.1. Taft's Steric Factor (Es) -- 2.9.2. Molar Refractivity (MR) -- 2.9.3. Verloop Steric Parameter -- 2.10. Hansch Equation -- 2.11. The Craig Plot -- 2.12. The Topliss Scheme -- 3. Factors Governing Ability of Drugs to Reach Active Site -- 3.1. Absorption -- 3.2. Distribution -- 3.3. Metabolism (Biotransformation) -- 3.4. Excretion -- 3.5. Intramolecular Distances and Biological Activity -- 4. Dissociation Constants -- 4.1. Drugs Exerting Action as Undissociated Molecules -- 4.2. Drugs Exerting Action as Ionized Molecules.
5. Isosterism and Bio-Isosterism -- 5.1. Classical Bioisosteres -- 5.2. Nonclassical Bio-isosteres -- 6. Stereochemistry and Drug Action -- 6.1. Enantiomers -- 6.2. Diastereoisomers -- 6.3. Stereochemistry and Biologic Activity -- 6.3.1. Positional Isomers (or Constitutional Isomers) -- 6.3.2. Geometrical Isomers -- 6.3.3. Absolute Configuration -- 6.3.4. Easson-Stedman Theory* -- 6.3.5. Conformationally Flexible to Conformationally Rigid Molecule -- 7. Chemical Properties -- 7.1. Molecule Negentropy -- 7.2. Cammarata Correlation -- Chapter 3. Molecular Modeling and Drug Design -- 1. Introduction -- 2. Methodologies : Molecular Modeling -- 2.1. Molecular Mechanics -- 2.2. Quantum Mechanics (or Quantum Mechanical Methods) -- 2.2.1. Charge and Electrostatics -- 2.2.2. Parameterization of Force Fields -- 2.2.3. Chemical Reaction(s) Modeling and Design of Transition Inhibitors -- 3. Known Receptor Sites -- 3.1. 3D Structure of Macromolecular Targets -- 3.2. Structure-Based Drug Design (or Structure-Aided Drug Design) -- 3.3. Major Steps in Structure-Based Drug Design -- 3.4. Ligand Receptor Recognition -- 3.5. Active Site for a Target Molecule -- 3.6. Meaning of 'Site' -- 3.7. Characterization of Site -- 3.7.1. Hydrogen Bonding and Other Group Binding Sites -- 3.7.2. Electrostatic and Hydrophobic Fields -- 3.8. Design of Ligands -- 3.8.1. Visually Assisted Design -- 3.8.2. 3D Databases -- 3.8.3. 'Divide-and Rule' Concept in Design of Ligands -- 3.8.4. De Novo Design -- 3.9. Calculation of Affinity -- 3.9.1. Components of Bonding Affinity -- 3.9.2. Binding Energetics and Comparisons -- 3.9.3. Simulations and the Thermodynamic Cycle -- 3.9.4. Multiple Binding Modes -- 4. Unknown Receptor Sites -- 4.1. Pharmacophore Vs Binding-site Models -- 4.1.1. Pharmacophore Models -- 4.1.2. Binding-Site Models -- 4.1.3. Molecular Extensions.
4.1.4. Activity Vs Affinity -- 4.2. Searching for Similarity -- 4.2.1. Simple Comparisons -- 4.2.2. Visualization of Molecular Properties -- 4.3. Molecular Comparisons -- 5. Predictive ADME* -- 6. Reverse Designing -- 6.1. High Throughput Screening -- 6.2. Combinatorial Chemistry -- 7. Cadd Methods : Comparison For Determining Relative inding Affinites Of Cox-2 Inhibitors -- Chapter 4. General Anaesthetics -- 1. Introduction -- 2. Classification -- 2.1. Inhalation Anaesthetics -- 2.2. Intravenous Anaesthetics -- 2.3. Basal Anaesthetics -- 3. Mode of Action of General Anaesthetics -- 3.1. Lipid Theory -- 3.2. Physical Theory -- 3.3. Biochemical Theory -- 3.4. Miscellaneous Theory -- 3.5. Meyer-Overton Theory -- 3.6. Minimum Alveolar Concentration (MAC) -- 3.7. Stereochemical Effects -- 3.8. Ion Channel and Protein Receptor Hypotheses -- 4. Mechanism of Action of General Anaesthetics -- Chapter 5. Local Anaesthetics -- 1. Introduction -- 2. Classification -- 2.1. The Esters -- 2.2. Piperidine or Tropane Derivatives -- 2.3. The Amides -- 2.4. The Quinoline and Iso-quinoline Analogues -- 2.5. Miscellaneous Type -- 3. Chemical Considerations of Local Anaesthetic Drugsubstances -- 3.1. Lofgren's Classification -- 3.1.1. Lipophilic Entity -- 3.1.2. Intermediate Chain -- 3.1.3. Hydrophilic Entity -- 4. Benzoic Acid and Aniline Analogues with Potential Local Anaesthetic Profile -- 5. Mode of Action of Some Selected Local Anaesthetics -- Chapter 6. Sedatives and Hypnotics -- 1. Introduction -- 2. Classification -- 2.1 Barbiturates -- 2.2 Non-barbiturates -- 3. Mode of Action of Barbiturates -- 4. Mechanism of Action -- 5. Barbiturates Vs Benzodiazepines -- 6. Structure-Activity Relationship -- 7. Barbiturates Vs Dissociation Constant (pKa) -- 8. Substitutions on Hetero Atoms in Barbiturates -- 9 OH-Catalyzed Degradation of Barbiturates.
10. Specific Mechanism of Action of Some Sedatives and Hypnotics -- Chapter 7. Anticonvulsants -- 1. Introduction -- 2. Classification -- 2.1 Barbiturates -- 2.2 Hydantoin Derivatives -- 2.3. Oxazolidinediones -- 2.4. Succinimides -- 2.5. Miscellaneous -- 3. Chemotherapy* of Epilepsy -- 4. Mechanism of Action for the Anticonvulsants -- 5. Specific Mechanisms of Selected Anticonvulsants -- Chapter 8. Muscle Relaxants -- 1. Introduction -- 2. Classification -- 2.1 Neuromuscular Blocking Drugs -- 2.2 Centrally Acting Muscle Relaxants -- 3. General Mechanism of Action of Muscle Relaxants -- 4. Mode of Action of Some Specific Muscle Relaxants -- Chapter 9. Central Nervous System Stimulants -- 1. Introduction -- 2. Classification -- 2.1. Xanthine Derivatives -- 2.2. Analeptics -- 2.3. Miscellaneous Central Nervous System Stimulants -- 3. CNS-Peptides, S-Glutamate and Blockade of NMDA-Induced Responses -- 3.1. CNS-Peptides -- 3.2. S-Glutamate and Blockade of NMDA-Induced Responses -- 4. Mechanism of Action of Selected CNS-Stimulants -- Chapter 10. Antipyretic Analgesics -- 1. Introduction -- 2. Classification -- 2.1. Aniline and p-Aminophenol Analogues -- 2.2. Salicylic Acid Analogues -- 2.3. Quinoline Derivatives -- 2.4. Pyrazolones and Pyrazolodiones -- 2.5. The N-Arylanthranilic Acids -- 3. Mechanism of Action -- 4. Mechanism of Action of Selected Antipyretic-Analgesics -- Chapter 11. Narcotic Analgesics (Opiate Analgesics) -- 1. Introduction -- 2. Limitations of Opiate Analgesics -- 3. Characteristic Features of Opioids -- 3.1. Opioid Peptides -- 3.2. Opioid Receptors -- 3.3. Orphan Opioid Receptor -- 3.4. Mu Opioid Receptors -- 3.5. Kappa Opioid Receptors -- 3.6. Delta Opioid Receptors -- 3.7. Opioid Receptors : Identification and Activation -- 4. Classification -- 4.1. Morphine Analogues -- 4.2. Morphinan Analogues -- 4.3. Morphan Analogues.
4.4. 4-Phenylpiperidine Analogues -- 4.5. Phenylpropylamine Analogues -- 4.6. Miscellaneous Analogues -- 5. Narcotic Antagonists -- 6. Morphine : Structural Representations -- 7. Mechanism of Action of Certain Narcotic Analgesics -- Chapter 12. Cardiovascular Drugs -- 1. Introduction -- 2. Classification -- 3. Cardiac Glycosides -- 3.1. Designing the Cardiac Glycoside Receptor -- 3.2. Mechanism of Action -- 4. Antihypertensive and Hypotensive Drugs -- 4.1. Renin-Angiotensin Pathway -- 4.2. Angiotensin II Receptor Antagonists -- 4.3. Potential-Dependent Calcium Channels -- 4.4. Mechanism of Action of Selected Antihypertensive and Hypotensive Drugs -- 5. Antiarrhythmic Agents -- 5.1. Membrane-Stabilizing Agents -- 5.1.1. Mechanism of Action of Membrane-Stabilizing Agents -- 5.2. Antisympathetic Drugs -- 5.2.1. Mechanism of Action -- 5.3. Prolonging Cardiac Action -- 5.3.1 Mechanism of Action -- 5.4. Interference with Calcium Conductance -- 5.4.1. Mechanism of Action -- 6. Vasopressor Drugs -- 6.1. Mechanism of Action -- Chapter 13. Autonomic Drugs -- 1. Introduction -- 2. Classification -- 3. Sympathomimetic Drugs -- 3.1. Mechanism of Action -- 3.2. Structure Activity Relationships (SARs) -- 4. Beta Adrenergic Receptor Stimulants -- 4.1. Mechanism of Action -- 5. Adrenergic Receptor Blocking Agents -- 5.1. α-Adrenoceptor Blocking Agents -- 5.1.1. Mechanism of Action -- 5.2. β-Adrenoceptor Blocking Agents -- 5.2.1. First Generation β-Blockers -- 5.2.2. Second Generation β-Blockers (Selective β1-Blockers) -- 5.2.3. Third Generation β-Blockers -- 5.3. Alpha- and Beta-Adrenergic Receptor Blocking Agent -- 6. Cholinomimetic (Parasympathomimetic) Drugs -- 6.1. Directly Acting -- 6.2. Indirectly Acting (Anticholinesterase) Drugs -- 6.2.1. Mechanism of Action -- 7. Antimuscarinic (Anticholinergic) Agents -- 7.1. Aminoalcohol Esters -- 7.2. Aminoalcohol Ethers.
7.3. Aminoalcohol Carbamates.
Summary: The qualified success and general appeal of Medicinal Chemistry is not only confined to the Indian subcontinent, but it has also won an overwhelming popularity in other parts of the world. Specific care has been taken to maintain and sustain the fundamental philosophy of the textbook embracing rigidly the original pattern and style of presentation with a particular expatiated treatment of synthesis of potential medicinal compounds for the ultimate benefits of the ?teachers and the taught? alike. The present thoroughly revised and skilfully expanded Fourth Edition essentially contains three new and important chapters, namely : Molecular Modeling and Drug Design (Chapter 3), Adrenocortical Steroids (Chapter 24), and Antimycobacterial Agents (Chapter 26) so as to make the textbook more useful to its readers.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Preface -- Preface to The Fourth Edition -- Preface to The First Edition -- Contents -- Chapter 1. Drug Design-A Rational Approach -- 1. Introduction -- 2. Analogues and Prodrugs -- 3. Concept of Lead -- 3.1 Examples -- 4. Factors Governing Drug-Design -- 5. Rational Approach to Drug Design -- 5.1. Quantum Mechanical Approach -- 5.2. Molecular Orbital Approach -- 5.3. Molecular Connectivity Approach -- 5.4. Linear Free Energy Approaches -- 6. Drug-Design : The Method of Variation -- 6.1. Drug Design through Disjunction -- 6.2. Drug Design through Conjunction -- 7. Drug Design and Development : An Overview -- 7.1. Preamble -- 7.2. Revolutions in Drug Discovery -- 7.3. Research and Development Strategies -- 8. Molecular Hybridisation -- 9. Rigidity and Flexibility Vs Drug Design -- 9.1. Increased Rigidity -- 9.2. Increased Flexibility -- 10. Tailoring of Drugs -- 11. General Considerations -- Chapter 2. Physical-Chemical Factors and Biological Activities -- 1. Introduction -- 2. Physical Properties -- 2.1. Features Governing Drug Action at Active Site -- 2.2. Structurally Specific Drugs -- 2.3. Structurally Non-specific Drugs -- 2.4. Thermodynamic Activity -- 2.5. Meyer-Overton and Meyer-Hemmi Theory -- 2.6. Ferguson's Theory -- 2.7. Van der Waal's Constants -- 2.8. The Cut-off Point -- 2.9. Steric Factors -- 2.9.1. Taft's Steric Factor (Es) -- 2.9.2. Molar Refractivity (MR) -- 2.9.3. Verloop Steric Parameter -- 2.10. Hansch Equation -- 2.11. The Craig Plot -- 2.12. The Topliss Scheme -- 3. Factors Governing Ability of Drugs to Reach Active Site -- 3.1. Absorption -- 3.2. Distribution -- 3.3. Metabolism (Biotransformation) -- 3.4. Excretion -- 3.5. Intramolecular Distances and Biological Activity -- 4. Dissociation Constants -- 4.1. Drugs Exerting Action as Undissociated Molecules -- 4.2. Drugs Exerting Action as Ionized Molecules.

5. Isosterism and Bio-Isosterism -- 5.1. Classical Bioisosteres -- 5.2. Nonclassical Bio-isosteres -- 6. Stereochemistry and Drug Action -- 6.1. Enantiomers -- 6.2. Diastereoisomers -- 6.3. Stereochemistry and Biologic Activity -- 6.3.1. Positional Isomers (or Constitutional Isomers) -- 6.3.2. Geometrical Isomers -- 6.3.3. Absolute Configuration -- 6.3.4. Easson-Stedman Theory* -- 6.3.5. Conformationally Flexible to Conformationally Rigid Molecule -- 7. Chemical Properties -- 7.1. Molecule Negentropy -- 7.2. Cammarata Correlation -- Chapter 3. Molecular Modeling and Drug Design -- 1. Introduction -- 2. Methodologies : Molecular Modeling -- 2.1. Molecular Mechanics -- 2.2. Quantum Mechanics (or Quantum Mechanical Methods) -- 2.2.1. Charge and Electrostatics -- 2.2.2. Parameterization of Force Fields -- 2.2.3. Chemical Reaction(s) Modeling and Design of Transition Inhibitors -- 3. Known Receptor Sites -- 3.1. 3D Structure of Macromolecular Targets -- 3.2. Structure-Based Drug Design (or Structure-Aided Drug Design) -- 3.3. Major Steps in Structure-Based Drug Design -- 3.4. Ligand Receptor Recognition -- 3.5. Active Site for a Target Molecule -- 3.6. Meaning of 'Site' -- 3.7. Characterization of Site -- 3.7.1. Hydrogen Bonding and Other Group Binding Sites -- 3.7.2. Electrostatic and Hydrophobic Fields -- 3.8. Design of Ligands -- 3.8.1. Visually Assisted Design -- 3.8.2. 3D Databases -- 3.8.3. 'Divide-and Rule' Concept in Design of Ligands -- 3.8.4. De Novo Design -- 3.9. Calculation of Affinity -- 3.9.1. Components of Bonding Affinity -- 3.9.2. Binding Energetics and Comparisons -- 3.9.3. Simulations and the Thermodynamic Cycle -- 3.9.4. Multiple Binding Modes -- 4. Unknown Receptor Sites -- 4.1. Pharmacophore Vs Binding-site Models -- 4.1.1. Pharmacophore Models -- 4.1.2. Binding-Site Models -- 4.1.3. Molecular Extensions.

4.1.4. Activity Vs Affinity -- 4.2. Searching for Similarity -- 4.2.1. Simple Comparisons -- 4.2.2. Visualization of Molecular Properties -- 4.3. Molecular Comparisons -- 5. Predictive ADME* -- 6. Reverse Designing -- 6.1. High Throughput Screening -- 6.2. Combinatorial Chemistry -- 7. Cadd Methods : Comparison For Determining Relative inding Affinites Of Cox-2 Inhibitors -- Chapter 4. General Anaesthetics -- 1. Introduction -- 2. Classification -- 2.1. Inhalation Anaesthetics -- 2.2. Intravenous Anaesthetics -- 2.3. Basal Anaesthetics -- 3. Mode of Action of General Anaesthetics -- 3.1. Lipid Theory -- 3.2. Physical Theory -- 3.3. Biochemical Theory -- 3.4. Miscellaneous Theory -- 3.5. Meyer-Overton Theory -- 3.6. Minimum Alveolar Concentration (MAC) -- 3.7. Stereochemical Effects -- 3.8. Ion Channel and Protein Receptor Hypotheses -- 4. Mechanism of Action of General Anaesthetics -- Chapter 5. Local Anaesthetics -- 1. Introduction -- 2. Classification -- 2.1. The Esters -- 2.2. Piperidine or Tropane Derivatives -- 2.3. The Amides -- 2.4. The Quinoline and Iso-quinoline Analogues -- 2.5. Miscellaneous Type -- 3. Chemical Considerations of Local Anaesthetic Drugsubstances -- 3.1. Lofgren's Classification -- 3.1.1. Lipophilic Entity -- 3.1.2. Intermediate Chain -- 3.1.3. Hydrophilic Entity -- 4. Benzoic Acid and Aniline Analogues with Potential Local Anaesthetic Profile -- 5. Mode of Action of Some Selected Local Anaesthetics -- Chapter 6. Sedatives and Hypnotics -- 1. Introduction -- 2. Classification -- 2.1 Barbiturates -- 2.2 Non-barbiturates -- 3. Mode of Action of Barbiturates -- 4. Mechanism of Action -- 5. Barbiturates Vs Benzodiazepines -- 6. Structure-Activity Relationship -- 7. Barbiturates Vs Dissociation Constant (pKa) -- 8. Substitutions on Hetero Atoms in Barbiturates -- 9 OH-Catalyzed Degradation of Barbiturates.

10. Specific Mechanism of Action of Some Sedatives and Hypnotics -- Chapter 7. Anticonvulsants -- 1. Introduction -- 2. Classification -- 2.1 Barbiturates -- 2.2 Hydantoin Derivatives -- 2.3. Oxazolidinediones -- 2.4. Succinimides -- 2.5. Miscellaneous -- 3. Chemotherapy* of Epilepsy -- 4. Mechanism of Action for the Anticonvulsants -- 5. Specific Mechanisms of Selected Anticonvulsants -- Chapter 8. Muscle Relaxants -- 1. Introduction -- 2. Classification -- 2.1 Neuromuscular Blocking Drugs -- 2.2 Centrally Acting Muscle Relaxants -- 3. General Mechanism of Action of Muscle Relaxants -- 4. Mode of Action of Some Specific Muscle Relaxants -- Chapter 9. Central Nervous System Stimulants -- 1. Introduction -- 2. Classification -- 2.1. Xanthine Derivatives -- 2.2. Analeptics -- 2.3. Miscellaneous Central Nervous System Stimulants -- 3. CNS-Peptides, S-Glutamate and Blockade of NMDA-Induced Responses -- 3.1. CNS-Peptides -- 3.2. S-Glutamate and Blockade of NMDA-Induced Responses -- 4. Mechanism of Action of Selected CNS-Stimulants -- Chapter 10. Antipyretic Analgesics -- 1. Introduction -- 2. Classification -- 2.1. Aniline and p-Aminophenol Analogues -- 2.2. Salicylic Acid Analogues -- 2.3. Quinoline Derivatives -- 2.4. Pyrazolones and Pyrazolodiones -- 2.5. The N-Arylanthranilic Acids -- 3. Mechanism of Action -- 4. Mechanism of Action of Selected Antipyretic-Analgesics -- Chapter 11. Narcotic Analgesics (Opiate Analgesics) -- 1. Introduction -- 2. Limitations of Opiate Analgesics -- 3. Characteristic Features of Opioids -- 3.1. Opioid Peptides -- 3.2. Opioid Receptors -- 3.3. Orphan Opioid Receptor -- 3.4. Mu Opioid Receptors -- 3.5. Kappa Opioid Receptors -- 3.6. Delta Opioid Receptors -- 3.7. Opioid Receptors : Identification and Activation -- 4. Classification -- 4.1. Morphine Analogues -- 4.2. Morphinan Analogues -- 4.3. Morphan Analogues.

4.4. 4-Phenylpiperidine Analogues -- 4.5. Phenylpropylamine Analogues -- 4.6. Miscellaneous Analogues -- 5. Narcotic Antagonists -- 6. Morphine : Structural Representations -- 7. Mechanism of Action of Certain Narcotic Analgesics -- Chapter 12. Cardiovascular Drugs -- 1. Introduction -- 2. Classification -- 3. Cardiac Glycosides -- 3.1. Designing the Cardiac Glycoside Receptor -- 3.2. Mechanism of Action -- 4. Antihypertensive and Hypotensive Drugs -- 4.1. Renin-Angiotensin Pathway -- 4.2. Angiotensin II Receptor Antagonists -- 4.3. Potential-Dependent Calcium Channels -- 4.4. Mechanism of Action of Selected Antihypertensive and Hypotensive Drugs -- 5. Antiarrhythmic Agents -- 5.1. Membrane-Stabilizing Agents -- 5.1.1. Mechanism of Action of Membrane-Stabilizing Agents -- 5.2. Antisympathetic Drugs -- 5.2.1. Mechanism of Action -- 5.3. Prolonging Cardiac Action -- 5.3.1 Mechanism of Action -- 5.4. Interference with Calcium Conductance -- 5.4.1. Mechanism of Action -- 6. Vasopressor Drugs -- 6.1. Mechanism of Action -- Chapter 13. Autonomic Drugs -- 1. Introduction -- 2. Classification -- 3. Sympathomimetic Drugs -- 3.1. Mechanism of Action -- 3.2. Structure Activity Relationships (SARs) -- 4. Beta Adrenergic Receptor Stimulants -- 4.1. Mechanism of Action -- 5. Adrenergic Receptor Blocking Agents -- 5.1. α-Adrenoceptor Blocking Agents -- 5.1.1. Mechanism of Action -- 5.2. β-Adrenoceptor Blocking Agents -- 5.2.1. First Generation β-Blockers -- 5.2.2. Second Generation β-Blockers (Selective β1-Blockers) -- 5.2.3. Third Generation β-Blockers -- 5.3. Alpha- and Beta-Adrenergic Receptor Blocking Agent -- 6. Cholinomimetic (Parasympathomimetic) Drugs -- 6.1. Directly Acting -- 6.2. Indirectly Acting (Anticholinesterase) Drugs -- 6.2.1. Mechanism of Action -- 7. Antimuscarinic (Anticholinergic) Agents -- 7.1. Aminoalcohol Esters -- 7.2. Aminoalcohol Ethers.

7.3. Aminoalcohol Carbamates.

The qualified success and general appeal of Medicinal Chemistry is not only confined to the Indian subcontinent, but it has also won an overwhelming popularity in other parts of the world. Specific care has been taken to maintain and sustain the fundamental philosophy of the textbook embracing rigidly the original pattern and style of presentation with a particular expatiated treatment of synthesis of potential medicinal compounds for the ultimate benefits of the ?teachers and the taught? alike. The present thoroughly revised and skilfully expanded Fourth Edition essentially contains three new and important chapters, namely : Molecular Modeling and Drug Design (Chapter 3), Adrenocortical Steroids (Chapter 24), and Antimycobacterial Agents (Chapter 26) so as to make the textbook more useful to its readers.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha