Classical Novae.

By: Bode, Michael FContributor(s): Evans, AneurinMaterial type: TextTextSeries: Cambridge AstrophysicsPublisher: Cambridge : Cambridge University Press, 2008Copyright date: ©2008Edition: 2nd edDescription: 1 online resource (399 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511392276Subject(s): Stars, NewGenre/Form: Electronic books.Additional physical formats: Print version:: Classical NovaeDDC classification: 523.8446 LOC classification: QB841 -- .C595 2008ebOnline resources: Click to View
Contents:
Cover -- Half-title -- Series-title -- Title -- Copyright -- Contents -- List of contributors -- Preface to the first edition -- Preface to the second edition -- List of symbols -- 1 Novae: an historical perspective -- 1.1 Introduction -- 1.2 Definition of novae and related stars -- 1.3 Theories of novae until the mid twentieth century -- 1.4 Pre-telescopic discoveries, observations and catalogues -- 1.5 Modern discoveries, observations and catalogues -- 1.6 Photometric and spectroscopic properties of novae -- 1.6.1 Classification of nova light curves -- 1.6.2 Dividing nova light curves: the speed classes -- 1.6.3 Spectroscopic classification of novae -- 1.6.4 Novae as distance indicators -- 1.7 Novae and related stars -- 1.7.1 Novae and other stellar eruptions -- 1.7.2 Novae and other cataclysmic stars: evolutionary connections -- 1.8 Concluding remarks -- Acknowledgements -- References -- 2 Properties of novae: an overview -- 2.1 Introduction -- 2.2 Frequency and Galactic distribution of novae -- 2.3 Light curves during eruption -- 2.3.1 Initial rise, pre-maximum halt and final rise -- 2.3.2 Early decline and transition -- 2.4 Relationships among amplitude, rate of decline, absolute magnitude and expansion velocity -- 2.5 Spectral evolution during eruption -- 2.5.1 Pre-maximum spectrum -- 2.5.2 Principal spectrum -- 2.5.3 Diffuse enhanced spectrum -- 2.5.4 Orion spectrum -- 2.5.5 The nebular spectrum -- 2.5.6 The post-nova spectrum -- 2.5.7 Modern spectral classification -- 2.6 Novae as close binaries -- 2.7 Recurrent novae -- 2.8 Novae in quiescence and before eruption -- 2.9 Magnetic novae -- 2.10 Rapid photometric oscillations in novae -- 2.11 Conclusions -- Acknowledgements -- References -- 3 The evolution of nova-producing binary stars -- 3.1 Introduction -- 3.2 Origin and evolution: overview.
3.3 Mean mass transfer rates in CVs and symbiotic stars -- 3.3.1 Mass transfer driven by a magnetic stellar wind -- 3.3.2 Inflation of low mass stellar models in response to mass-loss and the origin of the period gap -- 3.3.3 Angular momentum loss due to gravitational wave radiation -- 3.3.4 Mass transfer driven by gravitational wave radiation -- 3.3.5 Mass transfer due to nuclear evolution in Algol-like CVs -- 3.3.6 Mass transfer in symbiotic stars due to accretion from a wind -- 3.4 A zeroth-order model for CV evolution -- 3.4.1 CV number density versus mean accretion rate -- 3.4.2 Nova rate versus mean accretion rate -- 3.4.3 Predicted observational CV distribution functions -- 3.4.4 Helium white dwarf CVs: AM CVn stars -- 3.4.5 Helium star CVs -- 3.5 Hydrogen-burning outbursts and critical helium-layer masses -- 3.5.1 Critical helium-layer masses without mass-loss and diffusion -- 3.5.2 Effect of mixing by particle diffusion and convection -- 3.6 Over-abundances of heavy elements in the cyclical model -- 3.6.1 The cyclical model -- 3.6.2 Application to 1M white dwarf models -- 3.6.3 Comparison with observations -- 3.7 Mixing due to rotation-induced instabilities -- 3.7.1 Assumptions and method -- 3.7.2 Models of nova explosions -- 3.8 Symbiotic star evolution -- 3.8.1 Plateau mass-luminosity relationships -- 3.8.2 Lifetimes during red and blue phases of hydrogen burning -- 3.8.3 Wind mass-loss versus nuclear processing -- 3.8.4 Wind accretion and steady state burning -- 3.9 Remarks on CVs and symbiotic stars as Type Ia supernova precursors -- References -- 4 Thermonuclear processes -- 4.1 Introduction -- 4.2 The thermonuclear runaway -- 4.3 Initial conditions for the outburst -- 4.4 The effects of the nuclear reactions and reaction rates on the outburst -- 4.5 Multi-dimensional studies of the thermonuclear runaway.
4.6 Nucleosynthesis in CO and ONe novae -- 4.7 Mass of the ejecta -- 4.8 Relationship of classical novae to supernovae of Type Ia -- 4.9 Summary and discussion -- Acknowledgements -- References -- 5 Nova atmospheres and winds -- 5.1 Introduction -- 5.2 Modeling nova atmospheres and spectra -- 5.2.1 Model assumptions -- Nova specific -- General -- 5.2.2 Model parameters -- 5.2.3 Model computation -- 5.3 Results: theory -- 5.3.1 The structure of nova atmospheres -- 5.3.2 The effects of the line blanketing -- 5.3.3 Departures from LTE -- 5.3.4 The effects of the form of the velocity field -- 5.3.5 The effects of the luminosity on the spectrum -- 5.3.6 The radiation pressure -- 5.4 Results: comparison with observations -- 5.4.1 The ONe nova V1974 Cyg -- 5.4.2 CO novae in the LMC -- 5.5 Summary and conclusions -- Acknowledgements -- References -- 6 Observational mysteries and theoretical challenges for abundance studies -- 6.1 Introduction -- 6.2 Photo-ionization analysis of the ejecta -- 6.2.1 Masses and structures -- 6.2.2 Techniques -- 6.2.3 Abundances -- 6.3 Dust in novae: some open questions -- 6.3.1 Formation mechanisms: nucleation and kinetic processes -- 6.3.2 Pre-solar grains: where do we stand? -- 6.4 Multi-dimensional modeling of a nova outburst: progress and prospects -- 6.5 The nuclear perspective -- 6.5.1 The puzzling synthesis of 7Li -- 6.5.2 Nuclear inputs and uncertainties -- 6.6 Closing remarks -- Acknowledgements -- References -- 7 Radio emission from novae -- 7.1 Introduction -- 7.2 Nature and measurement of radio emission from novae -- 7.3 Radio thermal bremsstrahlung from an expanding cloud -- 7.3.1 Uniform-slab model -- 7.3.2 Spherically symmetric shell with a density gradient -- 7.4 Shell kinematics -- 7.4.1 Hubble flow model -- 7.4.2 Variable wind model -- 7.4.3 Unified model.
7.5 Discussion of selected classical novae: first class data -- 7.5.1 FH Ser and HR Del -- 7.5.2 V1500 Cyg -- 7.5.3 V1974 Cyg -- 7.5.4 The significance of the inferred velocity gradients -- 7.6 Discussion of selected classical novae: second class data -- 7.6.1 V1370 Aql -- 7.6.2 QUVul -- 7.6.3 V705 Cas -- 7.6.4 V723 Cas -- 7.6.5 V1494 Aql -- 7.7 Estimates of distance, shell mass and kinetic energy -- 7.7.1 Distances using radio data -- 7.7.2 Shell masses and kinetic energies -- 7.7.3 Benefits and caveats regarding the radio analyses -- 7.8 Radio emission from related objects -- 7.8.1 Symbiotic stars -- 7.8.2 Recurrent novae -- 7.9 Concluding remarks -- Acknowledgements -- References -- 8 Infrared studies of classical novae -- 8.1 Introduction -- 8.2 Nova explosions in the context of Galactic chemical evolution -- 8.3 The infrared temporal development of novae -- 8.4 Determination of physical parameters -- 8.4.1 Coronal line emission in ONe novae -- 8.4.2 Grain formation in CO novae -- 8.5 Abundances in nova ejecta -- 8.6 Nova grain properties -- 8.7 Spitzer Space Telescope observations of classical novae -- 8.8 Summary and conclusions -- Acknowledgements -- References -- 9 Optical and ultraviolet evolution -- 9.1 Introduction -- 9.2 The ultraviolet-optical connection and the production of the visible spectrum -- 9.2.1 Radiative processes and spectrum formation -- 9.2.2 Nova spectroscopic taxonomy -- 9.3 Stages of the spectral development and the light curve -- 9.3.1 Optical spectrum -- 9.3.2 Ultraviolet spectrum -- 9.3.3 Bolometric evolution, the origin of the light curve, and the Maximum Magnitude-Rate of Decline relation -- 9.3.4 The fireball stage -- 9.4 Structure of the unresolved ejecta -- 9.4.1 P Cygni profiles and multiple absorption and emission line systems -- 9.4.2 Spectropolarimetry -- 9.4.3 Evidence for abundances and mixing in the ejecta.
9.5 Mass determinations for the ejecta -- 9.6 The X-ray turn-off seen from the ultraviolet -- 9.7 Recurrent novae as special cases -- 9.8 Summary -- Acknowledgements -- References -- 10 X-ray emission from classical novae in outburst -- 10.1 Introduction -- 10.2 Sources of X-rays -- 10.3 X-ray light curves -- 10.4 The soft component -- 10.4.1 V1974 Cyg -- 10.4.2 GQ Mus -- 10.4.3 LMC 1995 -- 10.4.4 V382 Vel -- 10.4.5 V1494 Aql -- 10.4.6 V4743 Sgr -- 10.4.7 X-ray survey of super-soft novae -- 10.5 The hard component -- 10.6 Re-establishment of accretion -- 10.7 Emission line spectra -- 10.8 Short-term variability -- 10.9 Concluding remarks -- References -- 11 Gamma-rays from classical novae -- 11.1 Introduction -- 11.2 Origin of gamma-rays from novae -- 11.2.1 Nucleosynthesis of radioactive nuclei -- 11.2.2 Gamma-ray production and propagation -- 11.3 Gamma-ray spectra and light curves of individual novae -- 11.3.1 Positron annihilation radiation: 511 keV line and continuum -- 11.3.2 Line emission from Be and 22Na at 478 and 1275 keV -- 11.4 Cumulative Galactic gamma-ray emission of novae -- 11.4.1 Galactic Na emission at 1275 keV from novae -- 11.4.2 Contribution of novae to Galactic Al emission at 1.809 MeV -- 11.5 Observations -- 11.5.1 The 1275 keV line from Na -- 11.5.2 The 478 keV line from Be -- 11.5.3 The 511 keV annihilation line -- 11.5.4 The 1.809 MeV line from 26Al -- 11.6 Observations with INTEGRAL -- 11.7 Discussion -- Acknowledgements -- References -- 12 Resolved nebular remnants -- 12.1 Introduction -- 12.2 Optical and near-infrared imagery -- 12.2.1 Optical -- 12.2.2 Near-infrared -- 12.3 The combination of optical imaging and spectroscopy -- 12.3.1 Physical conditions -- 12.3.2 Kinematics, remnant shape and distance determination -- 12.4 Radio imagery -- 12.5 Remnant shaping -- 12.5.1 Shaping mechanisms.
12.5.2 Speed class and remnant shape.
Summary: An updated and revised second edition reference on classical novae for researchers and graduate students.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-title -- Series-title -- Title -- Copyright -- Contents -- List of contributors -- Preface to the first edition -- Preface to the second edition -- List of symbols -- 1 Novae: an historical perspective -- 1.1 Introduction -- 1.2 Definition of novae and related stars -- 1.3 Theories of novae until the mid twentieth century -- 1.4 Pre-telescopic discoveries, observations and catalogues -- 1.5 Modern discoveries, observations and catalogues -- 1.6 Photometric and spectroscopic properties of novae -- 1.6.1 Classification of nova light curves -- 1.6.2 Dividing nova light curves: the speed classes -- 1.6.3 Spectroscopic classification of novae -- 1.6.4 Novae as distance indicators -- 1.7 Novae and related stars -- 1.7.1 Novae and other stellar eruptions -- 1.7.2 Novae and other cataclysmic stars: evolutionary connections -- 1.8 Concluding remarks -- Acknowledgements -- References -- 2 Properties of novae: an overview -- 2.1 Introduction -- 2.2 Frequency and Galactic distribution of novae -- 2.3 Light curves during eruption -- 2.3.1 Initial rise, pre-maximum halt and final rise -- 2.3.2 Early decline and transition -- 2.4 Relationships among amplitude, rate of decline, absolute magnitude and expansion velocity -- 2.5 Spectral evolution during eruption -- 2.5.1 Pre-maximum spectrum -- 2.5.2 Principal spectrum -- 2.5.3 Diffuse enhanced spectrum -- 2.5.4 Orion spectrum -- 2.5.5 The nebular spectrum -- 2.5.6 The post-nova spectrum -- 2.5.7 Modern spectral classification -- 2.6 Novae as close binaries -- 2.7 Recurrent novae -- 2.8 Novae in quiescence and before eruption -- 2.9 Magnetic novae -- 2.10 Rapid photometric oscillations in novae -- 2.11 Conclusions -- Acknowledgements -- References -- 3 The evolution of nova-producing binary stars -- 3.1 Introduction -- 3.2 Origin and evolution: overview.

3.3 Mean mass transfer rates in CVs and symbiotic stars -- 3.3.1 Mass transfer driven by a magnetic stellar wind -- 3.3.2 Inflation of low mass stellar models in response to mass-loss and the origin of the period gap -- 3.3.3 Angular momentum loss due to gravitational wave radiation -- 3.3.4 Mass transfer driven by gravitational wave radiation -- 3.3.5 Mass transfer due to nuclear evolution in Algol-like CVs -- 3.3.6 Mass transfer in symbiotic stars due to accretion from a wind -- 3.4 A zeroth-order model for CV evolution -- 3.4.1 CV number density versus mean accretion rate -- 3.4.2 Nova rate versus mean accretion rate -- 3.4.3 Predicted observational CV distribution functions -- 3.4.4 Helium white dwarf CVs: AM CVn stars -- 3.4.5 Helium star CVs -- 3.5 Hydrogen-burning outbursts and critical helium-layer masses -- 3.5.1 Critical helium-layer masses without mass-loss and diffusion -- 3.5.2 Effect of mixing by particle diffusion and convection -- 3.6 Over-abundances of heavy elements in the cyclical model -- 3.6.1 The cyclical model -- 3.6.2 Application to 1M white dwarf models -- 3.6.3 Comparison with observations -- 3.7 Mixing due to rotation-induced instabilities -- 3.7.1 Assumptions and method -- 3.7.2 Models of nova explosions -- 3.8 Symbiotic star evolution -- 3.8.1 Plateau mass-luminosity relationships -- 3.8.2 Lifetimes during red and blue phases of hydrogen burning -- 3.8.3 Wind mass-loss versus nuclear processing -- 3.8.4 Wind accretion and steady state burning -- 3.9 Remarks on CVs and symbiotic stars as Type Ia supernova precursors -- References -- 4 Thermonuclear processes -- 4.1 Introduction -- 4.2 The thermonuclear runaway -- 4.3 Initial conditions for the outburst -- 4.4 The effects of the nuclear reactions and reaction rates on the outburst -- 4.5 Multi-dimensional studies of the thermonuclear runaway.

4.6 Nucleosynthesis in CO and ONe novae -- 4.7 Mass of the ejecta -- 4.8 Relationship of classical novae to supernovae of Type Ia -- 4.9 Summary and discussion -- Acknowledgements -- References -- 5 Nova atmospheres and winds -- 5.1 Introduction -- 5.2 Modeling nova atmospheres and spectra -- 5.2.1 Model assumptions -- Nova specific -- General -- 5.2.2 Model parameters -- 5.2.3 Model computation -- 5.3 Results: theory -- 5.3.1 The structure of nova atmospheres -- 5.3.2 The effects of the line blanketing -- 5.3.3 Departures from LTE -- 5.3.4 The effects of the form of the velocity field -- 5.3.5 The effects of the luminosity on the spectrum -- 5.3.6 The radiation pressure -- 5.4 Results: comparison with observations -- 5.4.1 The ONe nova V1974 Cyg -- 5.4.2 CO novae in the LMC -- 5.5 Summary and conclusions -- Acknowledgements -- References -- 6 Observational mysteries and theoretical challenges for abundance studies -- 6.1 Introduction -- 6.2 Photo-ionization analysis of the ejecta -- 6.2.1 Masses and structures -- 6.2.2 Techniques -- 6.2.3 Abundances -- 6.3 Dust in novae: some open questions -- 6.3.1 Formation mechanisms: nucleation and kinetic processes -- 6.3.2 Pre-solar grains: where do we stand? -- 6.4 Multi-dimensional modeling of a nova outburst: progress and prospects -- 6.5 The nuclear perspective -- 6.5.1 The puzzling synthesis of 7Li -- 6.5.2 Nuclear inputs and uncertainties -- 6.6 Closing remarks -- Acknowledgements -- References -- 7 Radio emission from novae -- 7.1 Introduction -- 7.2 Nature and measurement of radio emission from novae -- 7.3 Radio thermal bremsstrahlung from an expanding cloud -- 7.3.1 Uniform-slab model -- 7.3.2 Spherically symmetric shell with a density gradient -- 7.4 Shell kinematics -- 7.4.1 Hubble flow model -- 7.4.2 Variable wind model -- 7.4.3 Unified model.

7.5 Discussion of selected classical novae: first class data -- 7.5.1 FH Ser and HR Del -- 7.5.2 V1500 Cyg -- 7.5.3 V1974 Cyg -- 7.5.4 The significance of the inferred velocity gradients -- 7.6 Discussion of selected classical novae: second class data -- 7.6.1 V1370 Aql -- 7.6.2 QUVul -- 7.6.3 V705 Cas -- 7.6.4 V723 Cas -- 7.6.5 V1494 Aql -- 7.7 Estimates of distance, shell mass and kinetic energy -- 7.7.1 Distances using radio data -- 7.7.2 Shell masses and kinetic energies -- 7.7.3 Benefits and caveats regarding the radio analyses -- 7.8 Radio emission from related objects -- 7.8.1 Symbiotic stars -- 7.8.2 Recurrent novae -- 7.9 Concluding remarks -- Acknowledgements -- References -- 8 Infrared studies of classical novae -- 8.1 Introduction -- 8.2 Nova explosions in the context of Galactic chemical evolution -- 8.3 The infrared temporal development of novae -- 8.4 Determination of physical parameters -- 8.4.1 Coronal line emission in ONe novae -- 8.4.2 Grain formation in CO novae -- 8.5 Abundances in nova ejecta -- 8.6 Nova grain properties -- 8.7 Spitzer Space Telescope observations of classical novae -- 8.8 Summary and conclusions -- Acknowledgements -- References -- 9 Optical and ultraviolet evolution -- 9.1 Introduction -- 9.2 The ultraviolet-optical connection and the production of the visible spectrum -- 9.2.1 Radiative processes and spectrum formation -- 9.2.2 Nova spectroscopic taxonomy -- 9.3 Stages of the spectral development and the light curve -- 9.3.1 Optical spectrum -- 9.3.2 Ultraviolet spectrum -- 9.3.3 Bolometric evolution, the origin of the light curve, and the Maximum Magnitude-Rate of Decline relation -- 9.3.4 The fireball stage -- 9.4 Structure of the unresolved ejecta -- 9.4.1 P Cygni profiles and multiple absorption and emission line systems -- 9.4.2 Spectropolarimetry -- 9.4.3 Evidence for abundances and mixing in the ejecta.

9.5 Mass determinations for the ejecta -- 9.6 The X-ray turn-off seen from the ultraviolet -- 9.7 Recurrent novae as special cases -- 9.8 Summary -- Acknowledgements -- References -- 10 X-ray emission from classical novae in outburst -- 10.1 Introduction -- 10.2 Sources of X-rays -- 10.3 X-ray light curves -- 10.4 The soft component -- 10.4.1 V1974 Cyg -- 10.4.2 GQ Mus -- 10.4.3 LMC 1995 -- 10.4.4 V382 Vel -- 10.4.5 V1494 Aql -- 10.4.6 V4743 Sgr -- 10.4.7 X-ray survey of super-soft novae -- 10.5 The hard component -- 10.6 Re-establishment of accretion -- 10.7 Emission line spectra -- 10.8 Short-term variability -- 10.9 Concluding remarks -- References -- 11 Gamma-rays from classical novae -- 11.1 Introduction -- 11.2 Origin of gamma-rays from novae -- 11.2.1 Nucleosynthesis of radioactive nuclei -- 11.2.2 Gamma-ray production and propagation -- 11.3 Gamma-ray spectra and light curves of individual novae -- 11.3.1 Positron annihilation radiation: 511 keV line and continuum -- 11.3.2 Line emission from Be and 22Na at 478 and 1275 keV -- 11.4 Cumulative Galactic gamma-ray emission of novae -- 11.4.1 Galactic Na emission at 1275 keV from novae -- 11.4.2 Contribution of novae to Galactic Al emission at 1.809 MeV -- 11.5 Observations -- 11.5.1 The 1275 keV line from Na -- 11.5.2 The 478 keV line from Be -- 11.5.3 The 511 keV annihilation line -- 11.5.4 The 1.809 MeV line from 26Al -- 11.6 Observations with INTEGRAL -- 11.7 Discussion -- Acknowledgements -- References -- 12 Resolved nebular remnants -- 12.1 Introduction -- 12.2 Optical and near-infrared imagery -- 12.2.1 Optical -- 12.2.2 Near-infrared -- 12.3 The combination of optical imaging and spectroscopy -- 12.3.1 Physical conditions -- 12.3.2 Kinematics, remnant shape and distance determination -- 12.4 Radio imagery -- 12.5 Remnant shaping -- 12.5.1 Shaping mechanisms.

12.5.2 Speed class and remnant shape.

An updated and revised second edition reference on classical novae for researchers and graduate students.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha