Handbook of Vacuum Science and Technology.
Material type:
Front Cover -- HANDBOOK OF VACUUM SCIENCE AND TECHNOLOGY -- Copyright Page -- Contents -- Preface -- List of Contributors -- Part 1: Fundamentals of Vacuum Technology and Surface Physics -- Chapter 1.1. Vacuum Nomenclature and Definitions -- 1.1.1 Basic Definition -- 1.1.2 Pressure Regions of Vacuum -- Chapter 1.2. Gas Properties -- 1.2.1 Description of Vacuum as a Low-Pressure Gas -- 1.2.2 Characteristics of a Gas-Basic Definitions -- 1.2.3 Gas Laws -- Chapter 1.3. Molecular Processes and Kinetic Theory -- 1.3.1 General Description -- 1.3.2 Molecular Motion -- 1.3.3 Kinetic Theory Derivation of the Gas Laws -- 1.3.4 Pressure -- 1.3.5 Molecular Mean Free Path -- 1.3.6 Number of Impacts with the Chamber Wall -- 1.3.7 Time to Form a Monolayer -- 1.3.8 Thermal Transpiration -- 1.3.9 Coefficient of Thermal Conductivity -- 1.3.10 Coefficient of Diffusion -- Chapter 1.4. Throughput, Pumping Speed, Evacuation Rate, Outgassing Rate, and Leak Rate -- Chapter 1.5. Gas Flow -- 1.5.1 Nature of Gas Flow -- 1.5.2 Turbulent Flow -- 1.5.3 Viscous, Streamline, or Laminar Flow -- 1.5.4 Molecular Flow -- 1.5.5 Flow Relationships -- Chapter 1.6. Conductance -- 1.6.1 Conductance -- 1.6.2 Conductances in Parallel -- 1.6.3 Conductances in Series -- Chapter 1.7. Flow Calculations -- 1.7.1 Equations for Viscous Flow -- 1.7.2 Equations for Molecular Flow -- 1.7.3 Knudsen's Formulation -- 1.7.4 Clausing Factors -- Chapter 1.8. Surface Physics and Its Relation to Vacuum Science -- 1.8.1 Physical Adsorption or "Adsorption -- 1.8.2 Chemisorption -- 1.8.3 Sticking Coefficient -- 1.8.4 Surface Area -- 1.8.5 Surface Adsorption Isotherms -- 1.8.6 Capillary Action -- 1.8.7 Condensation -- 1.8.8 Desorption Phenomena -- 1.8.9 Thermal Desorption -- 1.8.10 Photoactivation -- 1.8.11 Ultrasonic Desorption -- 1.8.12 Electron- and Ion-Stimulated Desorption.
1.8.13 Gas Release from Surfaces -- References -- Part 2: Creation of Vacuum -- Chapter 2.1. Technology of Vacuum Pumps - An Overview -- 2.1.1 Vacuum Pump Function Basics -- 2.1.2 Gas Transport: Throughput -- 2.1.3 Performance Parameters -- 2.1.4 Pumping Speed -- 2.1.5 Pumpdown Time -- 2.1.6 Ultimate Pressure -- 2.1.7 Forevacuum and High-Vacuum Pumping -- 2.1.8 Pump System Relationships -- 2.1.9 Crossover from Rough to High-Vacuum Pumps -- 2.1.10 Pumping System Design -- References -- Chapter 2.2. Diaphragm Pumps -- 2.2.1 Introduction: Basics and Operating Principle -- 2.2.2 State-of-the-Art Design and Manufacturing -- 2.2.3 Performance and Technical Data -- 2.2.4 Modular Concept for Specific Application Setups: Standalone Operation -- 2.2.5 Diaphragm Pumps as Backing and Auxiliary Pumps in Vacuum Systems -- References -- Chapter 2.3. Vacuum Blowers -- 2.3.1 Introduction -- 2.3.2 Equipment Description -- 2.3.3 Blower Operating Principle -- 2.3.4 Blower Pumping Efficiency -- 2.3.5 Blower Pumping Speed Calculations -- 2.3.6 Power Requirements -- 2.3.7 Temperature Considerations -- 2.3.8 Flow and Compression Ratio Control Mechanisms -- 2.3.9 Liquid-Sealed Blowers -- 2.3.10 Selected System Arrangements -- Chapter 2.4. Vacuum Jet Pumps (Diffusion Pumps) -- 2.4.1 Basic Pumping Mechanism -- 2.4.2 Pumping Speed -- 2.4.3 Throughput -- 2.4.4 Tolerable Forepressure -- 2.4.5 Ultimate Pressure -- 2.4.6 Backstreaming -- 2.4.7 Other Performance Aspects -- References -- Chapter 2.5. Cryogenic Pumps -- 2.5.1 Introduction -- 2.5.2 Cryopump Basics -- 2.5.3 Advanced Control Systems -- 2.5.4 Cryopump Process Applications -- 2.5.5 Cryogenic Pumps Specifically for Water Vapor -- 2.5.6 Comparison of Cryopumps to Other Types of Pumps -- 2.5.7 Future Developments -- References -- Chapter 2.6. Turbomolecular Pumps -- 2.6.1 Turbomolecular Pumps (TMP).
2.6.2 Molecular Drag Pumps (MDP) -- 2.6.3 Combination of Pumps (TMP + MDP) -- 2.6.4 Evaluation of Combinations of Backing Pumps and TMPs, Etc -- 2.6.5 The Use of TMP in Applications: Specific Effects and Demands -- 2.6.6 Avoiding Operational Mistakes -- References -- Chapter 2.7. Pumps for Ultra-High Vacuum Applications -- 2.7.1 System Design for Ultra-High Vacuum -- 2.7.2 The Selection of Pumps for Ultra-High Vacuum Applications -- 2.7.3 Sputter-Ion Pumps -- 2.7.4 Getter Pumps -- References -- Part 3: Vacuum Measurements -- Chapter 3.1. The Measurement of Low Pressures -- 3.1.1 Overview -- 3.1.2 Direct Reading Gauges -- 3.1.3 Indirect Reading Gauges -- 3.1.4 Calibration of Vacuum Gauges -- References -- Chapter 3.2. Mass Analysis and Partial Pressure Measurements -- 3.2.1 Overview and Applications -- 3.2.2 Inlet Systems -- 3.2.3 Ion Generation and Ion Sources -- 3.2.4 Ion Separation Analyzers -- 3.2.5 Detection of Ions -- References -- Chapter 3.3. Practical Aspects of Vacuum System Mass Spectrometers -- 3.3.1 Historical Insight -- 3.3.2 Expected Gases in a Vacuum System -- 3.3.3 The Ion Generation Process -- 3.3.4 Techniques for Analysis -- 3.3.5 Calibration of Vacuum System Mass Spectrometers -- 3.3.6 Some Applications -- References -- Chapter 3.4. Mass Flow Measurement and Control -- 3.4.1 General Principles of Mass Flow Measurement -- 3.4.2 Overview of Thermal Mass Flow Controller Technology -- 3.4.3 Performance Characteristics -- 3.4.4 Troubleshooting -- References -- Part 4: Systems Design and Components -- Chapter 4.1. Selection Considerations for Vacuum Valves -- 4.1.1 Introduction -- 4.1.2 Valves for Shutoff -- 4.1.3 Valves for Control -- 4.1.4 Valve Construction -- 4.1.5 Specialty Valves -- 4.1.6 Installation Considerations for Vacuum Valves -- References -- Chapter 4.2. Flange and Component Systems -- 4.2.1 Introduction.
4.2.2 Selecting a Flange System -- 4.2.3 Common Flange Systems -- 4.2.4 Components with Flanges Attached -- Trademarks -- References -- Chapter 4.3. Magnetic-Fluid-Sealed Rotary Motion Feedthroughs -- 4.3.1 Basic Sealing Principle -- 4.3.2 Application Factors -- 4.3.3 Impact of Feedthrough on Process -- 4.3.4 Impact of Process on Feedthrough -- 4.3.5 Materials Considerations -- 4.3.6 Application Examples -- 4.3.7 Comparison to Other Types of Feedthroughs -- Chapter 4.4. Viewports -- 4.4.1 Materials -- 4.4.2 Mounting Systems and Precautions -- Chapter 4.5. Construction Materials -- 4.5.1 Properties Defining Material Performance -- 4.5.2 Vacuum Chamber Materials -- 4.5.3 Special-Purpose Materials -- References -- Chapter 4.6. Demountable Seals for Flanges and Valves -- 4.6.1 Sealing Overview: Polymer and Metal Seals -- 4.6.2 The Elastomeric and Nonelastomeric Polymers Used in Vacuum Sealing -- 4.6.3 Metal Seals -- References -- Chapter 4.7. Outgassing of Materials -- 4.7.1 Relationships Among System Pressure, Pumping Speed, and Outgassing -- 4.7.2 Initial Pumpdown from Atmospheric Pressure -- 4.7.3 Pressure Vs. Time During Outgassing -- 4.7.4 The Outgassing Rate of Elastomers and Plastics -- 4.7.5 The Outgassing Rate of Metals and Ceramics -- 4.7.6 The Outgassing Rate of Preconditioned Vacuum Systems After Short Exposure to the Atmosphere -- 4.7.7 Methods of Decreasing the Outgassing Rate -- 4.7.8 Measurement of the Outgassing Rate of Materials -- References -- Chapter 4.8. Aluminum-Based Vacuum Systems -- 4.8.1 Outgassing -- 4.8.2 Demountable Seals -- 4.8.3 Cleaning and Surface Finishing -- 4.8.4 Mechanical Considerations -- 4.8.5 Thermal Conductivity and Emissivity -- 4.8.6 Corrosion -- 4.8.7 Welding Aluminum for Vacuum Applications -- References -- Chapter 4.9. Preparation and Cleaning of Vacuum Surfaces -- 4.9.1 Surface Modification.
4.9.2 External Cleaning -- 4.9.3 Assembly, Handling, and Storage -- 4.9.4 In Situ Cleaning -- 4.9.5 Documentation -- 4.9.6 Conclusion -- Trade Names -- References -- Part 5: Vacuum Applications -- Chapter 5.1. High-Vacuum-Based Processes: Sputtering -- 5.1.1 Sputtering and Deposition -- 5.1.2 Sputter Deposition Technologies -- 5.1.3 Magnetron Applications -- 5.1.4 Future Directions in Sputtering -- References -- Chapter 5.2. Plasma Etching -- 5.2.1 Introduction -- 5.2.2 Review of Plasma Concepts Applicable to Etching Reactors -- 5.2.3 Basic Plasma Etching Requirements -- 5.2.4 Plasma Diagnostics -- 5.2.5 Basic Plasma Etch Reactors -- 5.2.6 Advanced Plasma Etch Reactors -- 5.2.7 New Trends -- References -- Chapter 5.3. Ion Beam Technology -- 5.3.1 Introduction -- 5.3.2 Ion Beam Etching -- 5.3.3 Ion Beam Sputter Deposition -- 5.3.4 lon-Beam-Assisted Deposition -- 5.3.5 Ion Beam Direct Deposition -- 5.3.6 Conclusion -- References -- Chapter 5.4. Pulsed Laser Deposition -- 5.4.1 Introduction -- 5.4.2 Pulsed Laser Deposition System -- 5.4.3 The Ablation Mechanism -- 5.4.4 Advantages and Limitations -- 5.4.5 Materials Survey -- 5.4.6 Future Outlook -- References -- Chapter 5.5. Plasma-Enhanced Chemical Vapor Deposition -- 5.5.1 Introduction -- 5.5.2 Equipment and Other Practical Considerations -- 5.5.3 Process Scaleup -- 5.5.4 Conclusion -- References -- Chapter 5.6. Common Analytical Methods for Surface and Thin Film -- 5.6.1 Introduction -- 5.6.2 The Electron Spectroscopies -- 5.6.3 Methods Based on Ion Bombardment -- 5.6.4 UHV Generation and System Considerations for Surface Analysis -- References -- Part 6: Large-Scale Vacuum-Based Processes -- Chapter 6.1. Roll-to-Roll Vacuum Coating -- 6.1.1 Overview of Roll-to-Roll Vacuum Coating -- 6.1.2 Typical Products -- 6.1.3 Materials and Deposition Processes Commonly Used in Roll-to-Roll Coating.
6.1.4 Vacuum Systems for Roll-to-Roll Coating Applications.
The Handbook of Vacuum Technology consists of the latest innovations in vacuum science and technology with a strong orientation towards the vacuum practitioner. It covers many of the new vacuum pumps, materials, equipment, and applications. It also details the design and maintenance of modern vacuum systems. The authors are well known experts in their individual fields with the emphasis on performance, limitations, and applications rather than theory. There aremany useful tables, charts, and figures that will be of use to the practitioner. User oriented with many useful tables, charts, and figures of use to the practitioner Reviews new vacuum materials and equipment Illustrates the design and maintenance of modern vacuum systems Includes well referenced chapters.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.