Multi-Objective Group Decision Making : Methods, Software and Applications with Fuzzy Set Techniques.

By: Lu, JieContributor(s): Ruan, Da | Zhang, GuangquanMaterial type: TextTextSeries: Series in Electrical and Computer Engineering SerPublisher: Singapore : Imperial College Press, 2007Copyright date: ©2007Description: 1 online resource (407 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781860948596Subject(s): Decision making -- Mathematical models | Fuzzy setsGenre/Form: Electronic books.Additional physical formats: Print version:: Multi-Objective Group Decision Making : Methods, Software and Applications with Fuzzy Set TechniquesDDC classification: 519.542 LOC classification: QA279.4.M85 2007Online resources: Click to View
Contents:
Intro -- Contents -- Foreword -- Preface -- Part I: Decision Making, Decision Support Systems, and Fuzzy Sets -- 1. Decision Making -- 1.1 Decision and Decision Makers -- 1.2 Decision Making Process -- 1.3 Problem Modelling and Optimisation -- 1.4 Computerised Decision Support -- 2. Multi-Objective and Multi-Attribute Decision Making -- 2.1 Criteria, Objectives, and Attributes -- 2.2 MODM Models -- 2.3 MODM Methods -- 2.3.1 Classifications -- 2.3.2 Weighting method -- 2.3.3 Goal programming -- 2.3.4 A case-based example -- 2.4 MADM Models -- 2.5 MADM Methods -- 2.5.1 TOPSIS -- 2.5.2 AHP -- 2.5.3 A case-based example -- 2.6 Summary -- 3. Group Decision Making -- 3.1 Decision Groups -- 3.2 Characteristics -- 3.3 Models -- 3.4 Process -- 3.5 Methods -- 3.6 Group Support Systems and Groupware -- 3.7 Summary -- 4. Decision Support Systems -- 4.1 Concepts -- 4.2 Characteristics -- 4.3 Types -- 4.4 Multi-Objective DSS -- 4.5 Multi-Attribute DSS -- 4.6 Group DSS -- 4.7 Intelligent DSS -- 4.8 Web-Based DSS -- 4.9 Components -- 4.10 Summary -- 5. Fuzzy Sets and Systems -- 5.1 Fuzzy Sets -- 5.1.1 Definitions -- 5.1.2 Operations and properties -- 5.1.3 Decomposition theorem and the extension principle -- 5.2 Fuzzy Relations -- 5.3 Fuzzy Numbers -- 5.4 Linguistic Variables -- 5.5 Fuzzy Linear Programming -- 5.5.1 Zimmermann's model -- 5.5.2 Fuzzy parameters -- 5.6 Summary -- Part II: Fuzzy Multi-Objective Decision Making -- 6. Fuzzy MODM Models -- 6.1 A Problem -- 6.2 Fuzzy Parameter-Based MOLP Models -- 6.2.1 A general FMOLP model -- 6.2.2 An FMOLPa model -- 6.3 Solution Transformation Theories -- 6.3.1 General MOLP transformation -- 6.3.2 Weighted MOLP transformation -- 6.3.3 Constrained MOLP transformation -- 6.3.4 Weighted maximum MOLP transformation -- 6.4 Fuzzy Multi-Objective Linear Goal Programming Models -- 6.5 Summary -- 7. Fuzzy MODM Methods.
7.1 Related Issues -- 7.2 Fuzzy MOLP -- 7.2.1 Method description -- 7.2.2 A numeral example -- 7.3 Fuzzy MOLGP -- 7.3.1 Method description -- 7.3.2 A numeral example -- 7.4 Interactive FMOLP -- 7.4.1 Method description -- 7.4.2 A numeral example -- 7.5 Summary -- 8. Fuzzy Multi-Objective DSS -- 8.1 System Configuration -- 8.2 System Interface -- 8.3 A Model-Base and Model Management -- 8.4 A Method-Base and Solution Process -- 8.4.1 Fuzzy MOLP -- 8.4.2 Fuzzy MOLGP -- 8.4.3 Interactive FMOLP -- 8.5 Case-Based Examples -- 8.6 Summary -- Part III: Fuzzy Group Decision Making -- 9. Fuzzy MCDM -- 9.1 A Problem -- 9.2 Models -- 9.3 Fuzzy TOPSIS -- 9.4 Fuzzy AHP -- 9.5 A Hybrid Method -- 9.6 Case-Based Examples -- 9.7 Summary -- 10. Fuzzy Group Decision Making -- 10.1 The Rational-Political Model -- 10.2 Uncertain Factors -- 10.3 An Intelligent FMCGDM Method -- 10.4 A Case-Based Example -- 10.5 Summary -- 11. A Web-Based Fuzzy Group DSS -- 11.1 System Features -- 11.2 System Configuration -- 11.3 System Working Process -- 11.4 Case-Based Examples -- 11.5 Summary -- Part IV: Fuzzy Multi-Objective Group Decision Making -- 12. Multi-Objective Group DSS -- 12.1 Frameworks -- 12.2 Multi-Objective Based Aggregation Methods -- 12.2.1 Average solution method -- 12.2.2 Weighting objective method -- 12.2.3 Weighting member method -- 12.2.4 Ideal solution method -- 12.2.5 Solution analysis method -- 12.3 An Intelligent MOGDSS -- 12.4 Design of the Intelligent Guide Subsystem -- 12.4.1 Knowledge acquisition process -- 12.4.2 Characteristics analysis models -- 12.4.3 Novice and intermediate modes -- 12.4.4 Logical connectivity and characteristics -- 12.4.5 Questions and responses -- 12.4.6 Inference process -- 12.5 Implementation -- 12.5.1 The MODM method subsystem -- 12.5.2 The intelligent guide subsystem -- 12.5.3 The group subsystem -- 12.6 Summary.
13. Fuzzy Multi-Objective Group DSS -- 13.1 A Decision Method -- 13.2 System Configuration -- 13.3 System Interface -- 13.4 A Case-Based Example -- 13.5 Summary -- Part V: Applications -- 14. Environmental Economic Load Dispatch -- 14.1 The Problem -- 14.2 A Fuzzy Dynamic Model -- 14.3 A Transformation Method -- 14.4 A Solution Technique -- 14.5 A Case Study -- 14.6 Summary -- 15. Team Situation Awareness -- 15.1 Situation Awareness -- 15.2 Uncertainty, Inconsistency, and Distributed Environment -- 15.3 A Case-Based Example -- 15.4 Summary -- 16. Reverse Logistics Management -- 16.1 Reverse Logistics Chain -- 16.2 Characteristics of Decision Making in the Reverse Logistics -- 16.3 A Multi-Stage Multi-Criteria Decision Support Model -- 16.4 A Case Study -- 16.5 Summary -- Appendix A User Manual on FMODSS -- 1. Overview -- 2. Setting Up an FMOLP Problem -- 3. Solving the FMOLP Problem -- 3.1 By the FMOLP method -- 3.2 By the FMOLGP method -- 3.3 By the Interactive FMOLP method -- Appendix B User Manual on FGDSS -- Bibliography -- Abbreviation -- Index.
Summary: This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Foreword -- Preface -- Part I: Decision Making, Decision Support Systems, and Fuzzy Sets -- 1. Decision Making -- 1.1 Decision and Decision Makers -- 1.2 Decision Making Process -- 1.3 Problem Modelling and Optimisation -- 1.4 Computerised Decision Support -- 2. Multi-Objective and Multi-Attribute Decision Making -- 2.1 Criteria, Objectives, and Attributes -- 2.2 MODM Models -- 2.3 MODM Methods -- 2.3.1 Classifications -- 2.3.2 Weighting method -- 2.3.3 Goal programming -- 2.3.4 A case-based example -- 2.4 MADM Models -- 2.5 MADM Methods -- 2.5.1 TOPSIS -- 2.5.2 AHP -- 2.5.3 A case-based example -- 2.6 Summary -- 3. Group Decision Making -- 3.1 Decision Groups -- 3.2 Characteristics -- 3.3 Models -- 3.4 Process -- 3.5 Methods -- 3.6 Group Support Systems and Groupware -- 3.7 Summary -- 4. Decision Support Systems -- 4.1 Concepts -- 4.2 Characteristics -- 4.3 Types -- 4.4 Multi-Objective DSS -- 4.5 Multi-Attribute DSS -- 4.6 Group DSS -- 4.7 Intelligent DSS -- 4.8 Web-Based DSS -- 4.9 Components -- 4.10 Summary -- 5. Fuzzy Sets and Systems -- 5.1 Fuzzy Sets -- 5.1.1 Definitions -- 5.1.2 Operations and properties -- 5.1.3 Decomposition theorem and the extension principle -- 5.2 Fuzzy Relations -- 5.3 Fuzzy Numbers -- 5.4 Linguistic Variables -- 5.5 Fuzzy Linear Programming -- 5.5.1 Zimmermann's model -- 5.5.2 Fuzzy parameters -- 5.6 Summary -- Part II: Fuzzy Multi-Objective Decision Making -- 6. Fuzzy MODM Models -- 6.1 A Problem -- 6.2 Fuzzy Parameter-Based MOLP Models -- 6.2.1 A general FMOLP model -- 6.2.2 An FMOLPa model -- 6.3 Solution Transformation Theories -- 6.3.1 General MOLP transformation -- 6.3.2 Weighted MOLP transformation -- 6.3.3 Constrained MOLP transformation -- 6.3.4 Weighted maximum MOLP transformation -- 6.4 Fuzzy Multi-Objective Linear Goal Programming Models -- 6.5 Summary -- 7. Fuzzy MODM Methods.

7.1 Related Issues -- 7.2 Fuzzy MOLP -- 7.2.1 Method description -- 7.2.2 A numeral example -- 7.3 Fuzzy MOLGP -- 7.3.1 Method description -- 7.3.2 A numeral example -- 7.4 Interactive FMOLP -- 7.4.1 Method description -- 7.4.2 A numeral example -- 7.5 Summary -- 8. Fuzzy Multi-Objective DSS -- 8.1 System Configuration -- 8.2 System Interface -- 8.3 A Model-Base and Model Management -- 8.4 A Method-Base and Solution Process -- 8.4.1 Fuzzy MOLP -- 8.4.2 Fuzzy MOLGP -- 8.4.3 Interactive FMOLP -- 8.5 Case-Based Examples -- 8.6 Summary -- Part III: Fuzzy Group Decision Making -- 9. Fuzzy MCDM -- 9.1 A Problem -- 9.2 Models -- 9.3 Fuzzy TOPSIS -- 9.4 Fuzzy AHP -- 9.5 A Hybrid Method -- 9.6 Case-Based Examples -- 9.7 Summary -- 10. Fuzzy Group Decision Making -- 10.1 The Rational-Political Model -- 10.2 Uncertain Factors -- 10.3 An Intelligent FMCGDM Method -- 10.4 A Case-Based Example -- 10.5 Summary -- 11. A Web-Based Fuzzy Group DSS -- 11.1 System Features -- 11.2 System Configuration -- 11.3 System Working Process -- 11.4 Case-Based Examples -- 11.5 Summary -- Part IV: Fuzzy Multi-Objective Group Decision Making -- 12. Multi-Objective Group DSS -- 12.1 Frameworks -- 12.2 Multi-Objective Based Aggregation Methods -- 12.2.1 Average solution method -- 12.2.2 Weighting objective method -- 12.2.3 Weighting member method -- 12.2.4 Ideal solution method -- 12.2.5 Solution analysis method -- 12.3 An Intelligent MOGDSS -- 12.4 Design of the Intelligent Guide Subsystem -- 12.4.1 Knowledge acquisition process -- 12.4.2 Characteristics analysis models -- 12.4.3 Novice and intermediate modes -- 12.4.4 Logical connectivity and characteristics -- 12.4.5 Questions and responses -- 12.4.6 Inference process -- 12.5 Implementation -- 12.5.1 The MODM method subsystem -- 12.5.2 The intelligent guide subsystem -- 12.5.3 The group subsystem -- 12.6 Summary.

13. Fuzzy Multi-Objective Group DSS -- 13.1 A Decision Method -- 13.2 System Configuration -- 13.3 System Interface -- 13.4 A Case-Based Example -- 13.5 Summary -- Part V: Applications -- 14. Environmental Economic Load Dispatch -- 14.1 The Problem -- 14.2 A Fuzzy Dynamic Model -- 14.3 A Transformation Method -- 14.4 A Solution Technique -- 14.5 A Case Study -- 14.6 Summary -- 15. Team Situation Awareness -- 15.1 Situation Awareness -- 15.2 Uncertainty, Inconsistency, and Distributed Environment -- 15.3 A Case-Based Example -- 15.4 Summary -- 16. Reverse Logistics Management -- 16.1 Reverse Logistics Chain -- 16.2 Characteristics of Decision Making in the Reverse Logistics -- 16.3 A Multi-Stage Multi-Criteria Decision Support Model -- 16.4 A Case Study -- 16.5 Summary -- Appendix A User Manual on FMODSS -- 1. Overview -- 2. Setting Up an FMOLP Problem -- 3. Solving the FMOLP Problem -- 3.1 By the FMOLP method -- 3.2 By the FMOLGP method -- 3.3 By the Interactive FMOLP method -- Appendix B User Manual on FGDSS -- Bibliography -- Abbreviation -- Index.

This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha