Stellar Rotation.

By: Tassoul, Jean-LouisContributor(s): King, Andrew | Lin, Douglas | Maran, Stephen P | Pringle, Jim | Ward, MartinMaterial type: TextTextSeries: Cambridge AstrophysicsPublisher: Cambridge : Cambridge University Press, 2000Copyright date: ©2000Description: 1 online resource (274 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511151361Subject(s): Stars--RotationGenre/Form: Electronic books.Additional physical formats: Print version:: Stellar RotationDDC classification: 523.83 LOC classification: QB810 .T36 2000Online resources: Click to View
Contents:
Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Observational basis -- 1.1 Historical development -- 1.2 The Sun -- 1.2.1 Large-scale motions in the atmosphere -- 1.2.2 Helioseismology: The internal rotation rate -- 1.3 Single stars -- 1.4 Close binaries -- 1.5 Bibliographical notes -- 2 Rotating fluids -- 2.1 Introduction -- 2.2 The equations of fluid motion -- 2.2.1 Conservation principles -- 2.2.2 Boundary conditions -- 2.2.3 Rotating frame of reference -- 2.3 The vorticity equation -- 2.3.1 The Taylor-Proudman theorem -- 2.4 Reynolds stresses and eddy viscosities -- 2.5 Applications to the Earth's atmosphere -- 2.5.1 The geostrophic approximation -- 2.5.2 Ekman layer at a rigid plane boundary -- 2.5.3 Ekman pumping and secondary circulation -- 2.6 The wind-driven oceanic circulation -- 2.6.1 Ekman layer at the ocean-atmosphere interface -- 2.6.2 The Sverdrup relation -- 2.6.3 Western boundary currents: The Munk layer -- 2.7 Barotropic and baroclinic instabilities -- 2.7.1 The symmetric instability -- 2.7.2 The baroclinic instability -- 2.7.3 The shear-flow instability -- 2.8 Self-gravitating fluid masses -- 2.8.1 The virial equations -- 2.8.2 The Maclaurin and Jacobi ellipsoids -- 2.8.3 Rotating polytropes -- 2.9 Bibliographical notes -- 3 Rotating stars -- 3.1 Introduction -- 3.2 Basic concepts -- 3.2.1 The Poincaré-Wavre theorem -- 3.3 Some tentative solutions -- 3.3.1 The case of radiative equilibrium -- 3.3.2 The case of convective equilibrium -- 3.4 The dynamical instabilities -- 3.4.1 An energy principle -- 3.4.2 The Solberg-Høiland conditions -- 3.4.3 Nonaxisymmetric motions -- 3.5 The thermal instabilities -- 3.6 The eddy-mean flow interaction -- 3.7 Bibliographical notes -- 4 Meridional circulation -- 4.1 Introduction -- 4.2 A frictionless solution.
4.2.1 Sweet's meridional circulation -- 4.2.2 The classical objections -- 4.3 A consistent first-order solution -- 4.3.1 The linear case… -- 4.3.2 The nonlinear case… -- 4.4 A consistent second-order solution -- 4.4.1 Answer to the classical objections -- 4.5 Meridional circulation in a cooling white dwarf -- 4.6 Meridional circulation in a close-binary component -- 4.6.1 The tidally driven currents -- 4.6.2 The reflection effect in close binaries -- 4.7 Meridional circulation in a magnetic star -- 4.7.1 The magnetically driven currents -- 4.7.2 Circulation, rotation, and magnetic fields -- 4.8 Discussion -- 4.9 Bibliographical notes -- 5 Solar rotation -- 5.1 Introduction -- 5.2 Differential rotation in the convection zone -- 5.2.1 Mean-field models -- 5.2.2 Global-convection models -- 5.3 Meridional circulation in the radiative core -- 5.4 Spin-down of the solar interior -- 5.4.1 Rotation and turbulent diffusion -- 5.4.2 Rotation and magnetic fields -- 5.5 Discussion -- 5.6 Bibliographical notes -- 6 The early-type stars -- 6.1 Introduction -- 6.2 Main-sequence models -- 6.2.1 Uniform rotation versus differential rotation -- 6.2.2 Effects of rotation on the observable parameters -- 6.3 Axial rotation along the upper main sequence -- 6.3.1 Rotation in open clusters -- 6.3.2 The angular momentum diagram -- 6.3.3 The rotational velocity distributions -- 6.3.4 Rotation of Be and shell stars -- 6.3.5 Rotation of Am and Ap stars -- 6.4 Circulation, rotation, and diffusion -- 6.5 Rotation of evolved stars -- 6.6 Bibliographical notes -- 7 The late-type stars -- 7.1 Introduction -- 7.2 Schatzman's braking mechanism -- 7.3 Rotation of T Tauri and cluster stars -- 7.4 Rotational evolution of low-mass stars -- 7.4.1 T Tauri stars and accretion disks -- 7.4.2 Rotational evolution models -- 7.5 Bibliographical notes -- 8 Tidal interaction -- 8.1 Introduction.
8.2 The tidal-torque mechanism -- 8.2.1 Darwin's weak-friction model -- 8.2.2 Application to late-type binaries -- 8.3 The resonance mechanism -- 8.3.1 Application to early-type binaries -- 8.4 The hydrodynamical mechanism -- 8.4.1 The spin-up and spin-down of a rotating fluid -- 8.4.2 Ekman pumping in a tidally distorted star -- 8.4.3 The characteristic times -- 8.4.4 Pseudo-synchronization and orbital circularization -- 8.5 Contact binaries: The astrostrophic balance -- 8.6 Discussion -- 8.7 Bibliographical notes -- Epilogue -- Subject index -- Author index.
Summary: This authoritative volume, first published in 2000, provides the definitive reference on stellar rotation, combining theory and observation.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Observational basis -- 1.1 Historical development -- 1.2 The Sun -- 1.2.1 Large-scale motions in the atmosphere -- 1.2.2 Helioseismology: The internal rotation rate -- 1.3 Single stars -- 1.4 Close binaries -- 1.5 Bibliographical notes -- 2 Rotating fluids -- 2.1 Introduction -- 2.2 The equations of fluid motion -- 2.2.1 Conservation principles -- 2.2.2 Boundary conditions -- 2.2.3 Rotating frame of reference -- 2.3 The vorticity equation -- 2.3.1 The Taylor-Proudman theorem -- 2.4 Reynolds stresses and eddy viscosities -- 2.5 Applications to the Earth's atmosphere -- 2.5.1 The geostrophic approximation -- 2.5.2 Ekman layer at a rigid plane boundary -- 2.5.3 Ekman pumping and secondary circulation -- 2.6 The wind-driven oceanic circulation -- 2.6.1 Ekman layer at the ocean-atmosphere interface -- 2.6.2 The Sverdrup relation -- 2.6.3 Western boundary currents: The Munk layer -- 2.7 Barotropic and baroclinic instabilities -- 2.7.1 The symmetric instability -- 2.7.2 The baroclinic instability -- 2.7.3 The shear-flow instability -- 2.8 Self-gravitating fluid masses -- 2.8.1 The virial equations -- 2.8.2 The Maclaurin and Jacobi ellipsoids -- 2.8.3 Rotating polytropes -- 2.9 Bibliographical notes -- 3 Rotating stars -- 3.1 Introduction -- 3.2 Basic concepts -- 3.2.1 The Poincaré-Wavre theorem -- 3.3 Some tentative solutions -- 3.3.1 The case of radiative equilibrium -- 3.3.2 The case of convective equilibrium -- 3.4 The dynamical instabilities -- 3.4.1 An energy principle -- 3.4.2 The Solberg-Høiland conditions -- 3.4.3 Nonaxisymmetric motions -- 3.5 The thermal instabilities -- 3.6 The eddy-mean flow interaction -- 3.7 Bibliographical notes -- 4 Meridional circulation -- 4.1 Introduction -- 4.2 A frictionless solution.

4.2.1 Sweet's meridional circulation -- 4.2.2 The classical objections -- 4.3 A consistent first-order solution -- 4.3.1 The linear case… -- 4.3.2 The nonlinear case… -- 4.4 A consistent second-order solution -- 4.4.1 Answer to the classical objections -- 4.5 Meridional circulation in a cooling white dwarf -- 4.6 Meridional circulation in a close-binary component -- 4.6.1 The tidally driven currents -- 4.6.2 The reflection effect in close binaries -- 4.7 Meridional circulation in a magnetic star -- 4.7.1 The magnetically driven currents -- 4.7.2 Circulation, rotation, and magnetic fields -- 4.8 Discussion -- 4.9 Bibliographical notes -- 5 Solar rotation -- 5.1 Introduction -- 5.2 Differential rotation in the convection zone -- 5.2.1 Mean-field models -- 5.2.2 Global-convection models -- 5.3 Meridional circulation in the radiative core -- 5.4 Spin-down of the solar interior -- 5.4.1 Rotation and turbulent diffusion -- 5.4.2 Rotation and magnetic fields -- 5.5 Discussion -- 5.6 Bibliographical notes -- 6 The early-type stars -- 6.1 Introduction -- 6.2 Main-sequence models -- 6.2.1 Uniform rotation versus differential rotation -- 6.2.2 Effects of rotation on the observable parameters -- 6.3 Axial rotation along the upper main sequence -- 6.3.1 Rotation in open clusters -- 6.3.2 The angular momentum diagram -- 6.3.3 The rotational velocity distributions -- 6.3.4 Rotation of Be and shell stars -- 6.3.5 Rotation of Am and Ap stars -- 6.4 Circulation, rotation, and diffusion -- 6.5 Rotation of evolved stars -- 6.6 Bibliographical notes -- 7 The late-type stars -- 7.1 Introduction -- 7.2 Schatzman's braking mechanism -- 7.3 Rotation of T Tauri and cluster stars -- 7.4 Rotational evolution of low-mass stars -- 7.4.1 T Tauri stars and accretion disks -- 7.4.2 Rotational evolution models -- 7.5 Bibliographical notes -- 8 Tidal interaction -- 8.1 Introduction.

8.2 The tidal-torque mechanism -- 8.2.1 Darwin's weak-friction model -- 8.2.2 Application to late-type binaries -- 8.3 The resonance mechanism -- 8.3.1 Application to early-type binaries -- 8.4 The hydrodynamical mechanism -- 8.4.1 The spin-up and spin-down of a rotating fluid -- 8.4.2 Ekman pumping in a tidally distorted star -- 8.4.3 The characteristic times -- 8.4.4 Pseudo-synchronization and orbital circularization -- 8.5 Contact binaries: The astrostrophic balance -- 8.6 Discussion -- 8.7 Bibliographical notes -- Epilogue -- Subject index -- Author index.

This authoritative volume, first published in 2000, provides the definitive reference on stellar rotation, combining theory and observation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha