Introduction to the Physics of the Earth's Interior.

By: Poirier, Jean-PaulMaterial type: TextTextPublisher: Cambridge : Cambridge University Press, 2000Copyright date: ©2000Edition: 2nd edDescription: 1 online resource (327 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780511151323Subject(s): Earth--CoreGenre/Form: Electronic books.Additional physical formats: Print version:: Introduction to the Physics of the Earth's InteriorDDC classification: 551.11 LOC classification: QE509.2 .P65 2000Online resources: Click to View
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Preface to the first edition -- Preface to the second edition -- Introduction to the first edition -- 1 Background of thermodynamics of solids -- 1.1 Extensive and intensive conjugate quantities -- 1.2 Thermodynamic potentials -- 1.3 Maxwell's relations. Stiffnesses and compliances -- 2 Elastic moduli -- 2.1 Background of linear elasticity -- 2.2 Elastic constants and moduli -- 2.3 Thermoelastic coupling -- 2.3.1 Generalities -- 2.3.2 Isothermal and adiabatic moduli -- 2.3.3 Thermal pressure -- 3 Lattice vibrations -- 3.1 Generalities -- 3.2 Vibrations of a monatomic lattice -- 3.2.1 Dispersion curve of an infinite lattice -- 3.2.2 Density of states of a finite lattice -- 3.3 Debye's approximation -- 3.3.1 Debye's frequency -- 3.3.2 Vibrational energy and Debye temperature -- 3.3.3 Specific heat -- 3.3.4 Validity of Debye's approximation -- 3.4 Mie-Grüneisen equation of state -- 3.5 The Grüneisen parameters -- 3.6 Harmonicity, anharmonicity and quasi-harmonicity -- 3.6.1 Generalities -- 3.6.2 Thermal expansion -- 4 Equations of state -- 4.1 Generalities -- 4.2 Murnaghan's integrated linear equation of state -- 4.3 Birch-Murnaghan equation of state -- 4.3.1 Finite strain -- 4.3.2 Second-order Birch-Murnaghan equation of state -- 4.3.3 Third-order Birch-Murnaghan equation of state -- 4.4 A logarithmic equation of state -- 4.4.1 The Hencky finite strain -- 4.4.2 The logarithmic EOS -- 4.5 Equations of state derived from interatomic potentials -- 4.5.1 EOS derived from the Mie potential -- 4.5.2 The Vinet equation of state -- 4.6 Birch's law and velocity-density systematics -- 4.6.1 Generalities -- 4.6.2 Bulk-velocity-density systematics -- 4.7 Thermal equations of state -- 4.8 Shock-wave equations of state -- 4.8.1 Generalities -- 4.8.2 The Rankine-Hugoniot equations.
4.8.3 Reduction of the Hugoniot data to isothermal equation of state -- 4.9 First principles equations of state -- 4.9.1 Thomas-Fermi equation of state -- (i) The Thomas-Fermi approximation -- (ii) Pressure-volume relation at T=OK -- 4.9.2 Ab-initio quantum mechanical equations of state -- 5 Melting -- 5.1 Generalities -- 5.2 Thermodynamics of melting -- 5.2.1 Clausius-Clapeyron relation -- 5.2.2 Volume and entropy of melting -- 5.2.3 Metastable melting -- 5.3 Semi-empirical melting laws -- 5.3.1 Simon equation -- 5.3.2 Kraut-Kennedy equation -- 5.4 Theoretical melting models -- 5.4.1 Shear instability models -- 5.4.2 Vibrational instability: Lindemann law -- (i) Sutherland relation -- (ii) Lindemann law -- 5.4.3 Lennard-Jones and Devonshire model -- 5.4.4 Dislocation-mediated melting -- 5.4.5 Summary -- 5.5 Melting of lower-mantle minerals -- 5.5.1 Melting of MgSiO3 perovskite -- 5.5.2 Melting of MgO and magnesiowüstite -- 5.6 Phase diagram and melting of iron -- 6 Transport properties -- 6.1 Generalities -- (i) Fluid flow through a porous medium -- (ii) Electrical conduction -- (iii) Diffusion of matter -- (iv) Diffusion of momentum -- (v) Diffusion of heat -- (vi) Dimensionless numbers -- 6.2 Mechanisms of diffusion in solids -- (i) Empirical relations -- (ii) Effect of pressure -- 6.3 Viscosity of solids -- (i) Diffusion creep -- (ii) Dislocation creep -- (iii) Effect of pressure -- 6.4 Diffusion and viscosity in liquid metals -- (i) Empirical relations and effect of pressure -- 6.5 Electrical conduction -- 6.5.1 Generalities on the electronic structure of solids -- 6.5.2 Mechanisms of electrical conduction -- (i) Generalities -- (ii) Metallic conduction -- (iii) Semi-conduction -- 6.5.3 Electrical conductivity of mantle minerals -- (i) Forsterite, olivines, fayalite -- (ii) Periclase and magnesiowüstite.
(iii) Crystals with perovskite structure -- (iv) Perovskite-magnesiowüstite assemblage -- 6.5.4 Electrical conductivity of the fluid core -- 6.6 Thermal conduction -- (i) Generalities -- (ii) Lattice conduction -- (iii) Electronic conduction -- (iv) Radiative conductivity -- 7 Earth models -- 7.1 Generalities -- 7.2 Seismological models -- 7.2.1 Density distribution in the Earth -- 7.2.2 The PREM model -- 7.3 Thermal models -- 7.3.1 Sources of heat -- 7.3.2 Heat transfer by convection -- 7.3.3 Convection patterns in the mantle -- 7.3.4 Geotherms -- 7.4 Mineralogical models -- 7.4.1 Phase transitions of the mantle minerals -- (i) Generalities on phase transitions -- (ii)The phase transitions of MgSiO3 -- (iii) The phase transitions of Mg2SiO4 -- 7.4.2 Mantle and core models -- (i) Constraints and trade-offs -- (ii) Mantle models -- (iii) The core-mantle boundary and D" layer -- (iv) The outer core -- (v) The inner core -- Appendix -- Bibliography -- Index.
Summary: New edition of successful textbook on deep Earth for advanced students in geophysics and mineralogy.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-title -- Title -- Copyright -- Contents -- Preface to the first edition -- Preface to the second edition -- Introduction to the first edition -- 1 Background of thermodynamics of solids -- 1.1 Extensive and intensive conjugate quantities -- 1.2 Thermodynamic potentials -- 1.3 Maxwell's relations. Stiffnesses and compliances -- 2 Elastic moduli -- 2.1 Background of linear elasticity -- 2.2 Elastic constants and moduli -- 2.3 Thermoelastic coupling -- 2.3.1 Generalities -- 2.3.2 Isothermal and adiabatic moduli -- 2.3.3 Thermal pressure -- 3 Lattice vibrations -- 3.1 Generalities -- 3.2 Vibrations of a monatomic lattice -- 3.2.1 Dispersion curve of an infinite lattice -- 3.2.2 Density of states of a finite lattice -- 3.3 Debye's approximation -- 3.3.1 Debye's frequency -- 3.3.2 Vibrational energy and Debye temperature -- 3.3.3 Specific heat -- 3.3.4 Validity of Debye's approximation -- 3.4 Mie-Grüneisen equation of state -- 3.5 The Grüneisen parameters -- 3.6 Harmonicity, anharmonicity and quasi-harmonicity -- 3.6.1 Generalities -- 3.6.2 Thermal expansion -- 4 Equations of state -- 4.1 Generalities -- 4.2 Murnaghan's integrated linear equation of state -- 4.3 Birch-Murnaghan equation of state -- 4.3.1 Finite strain -- 4.3.2 Second-order Birch-Murnaghan equation of state -- 4.3.3 Third-order Birch-Murnaghan equation of state -- 4.4 A logarithmic equation of state -- 4.4.1 The Hencky finite strain -- 4.4.2 The logarithmic EOS -- 4.5 Equations of state derived from interatomic potentials -- 4.5.1 EOS derived from the Mie potential -- 4.5.2 The Vinet equation of state -- 4.6 Birch's law and velocity-density systematics -- 4.6.1 Generalities -- 4.6.2 Bulk-velocity-density systematics -- 4.7 Thermal equations of state -- 4.8 Shock-wave equations of state -- 4.8.1 Generalities -- 4.8.2 The Rankine-Hugoniot equations.

4.8.3 Reduction of the Hugoniot data to isothermal equation of state -- 4.9 First principles equations of state -- 4.9.1 Thomas-Fermi equation of state -- (i) The Thomas-Fermi approximation -- (ii) Pressure-volume relation at T=OK -- 4.9.2 Ab-initio quantum mechanical equations of state -- 5 Melting -- 5.1 Generalities -- 5.2 Thermodynamics of melting -- 5.2.1 Clausius-Clapeyron relation -- 5.2.2 Volume and entropy of melting -- 5.2.3 Metastable melting -- 5.3 Semi-empirical melting laws -- 5.3.1 Simon equation -- 5.3.2 Kraut-Kennedy equation -- 5.4 Theoretical melting models -- 5.4.1 Shear instability models -- 5.4.2 Vibrational instability: Lindemann law -- (i) Sutherland relation -- (ii) Lindemann law -- 5.4.3 Lennard-Jones and Devonshire model -- 5.4.4 Dislocation-mediated melting -- 5.4.5 Summary -- 5.5 Melting of lower-mantle minerals -- 5.5.1 Melting of MgSiO3 perovskite -- 5.5.2 Melting of MgO and magnesiowüstite -- 5.6 Phase diagram and melting of iron -- 6 Transport properties -- 6.1 Generalities -- (i) Fluid flow through a porous medium -- (ii) Electrical conduction -- (iii) Diffusion of matter -- (iv) Diffusion of momentum -- (v) Diffusion of heat -- (vi) Dimensionless numbers -- 6.2 Mechanisms of diffusion in solids -- (i) Empirical relations -- (ii) Effect of pressure -- 6.3 Viscosity of solids -- (i) Diffusion creep -- (ii) Dislocation creep -- (iii) Effect of pressure -- 6.4 Diffusion and viscosity in liquid metals -- (i) Empirical relations and effect of pressure -- 6.5 Electrical conduction -- 6.5.1 Generalities on the electronic structure of solids -- 6.5.2 Mechanisms of electrical conduction -- (i) Generalities -- (ii) Metallic conduction -- (iii) Semi-conduction -- 6.5.3 Electrical conductivity of mantle minerals -- (i) Forsterite, olivines, fayalite -- (ii) Periclase and magnesiowüstite.

(iii) Crystals with perovskite structure -- (iv) Perovskite-magnesiowüstite assemblage -- 6.5.4 Electrical conductivity of the fluid core -- 6.6 Thermal conduction -- (i) Generalities -- (ii) Lattice conduction -- (iii) Electronic conduction -- (iv) Radiative conductivity -- 7 Earth models -- 7.1 Generalities -- 7.2 Seismological models -- 7.2.1 Density distribution in the Earth -- 7.2.2 The PREM model -- 7.3 Thermal models -- 7.3.1 Sources of heat -- 7.3.2 Heat transfer by convection -- 7.3.3 Convection patterns in the mantle -- 7.3.4 Geotherms -- 7.4 Mineralogical models -- 7.4.1 Phase transitions of the mantle minerals -- (i) Generalities on phase transitions -- (ii)The phase transitions of MgSiO3 -- (iii) The phase transitions of Mg2SiO4 -- 7.4.2 Mantle and core models -- (i) Constraints and trade-offs -- (ii) Mantle models -- (iii) The core-mantle boundary and D" layer -- (iv) The outer core -- (v) The inner core -- Appendix -- Bibliography -- Index.

New edition of successful textbook on deep Earth for advanced students in geophysics and mineralogy.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha