Ad Hoc Networks Telecommunications and Game Theory.

By: Benslama, MalekContributor(s): Boucenna, Mohamed Lamine | Batatia, HadjMaterial type: TextTextPublisher: Somerset : John Wiley & Sons, Incorporated, 2015Copyright date: ©2014Edition: 1st edDescription: 1 online resource (167 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781119089384Subject(s): Ad hoc networks (Computer networks) -- Mathematical models | Game theoryGenre/Form: Electronic books.Additional physical formats: Print version:: Ad Hoc Networks Telecommunications and Game TheoryDDC classification: 621.382 LOC classification: TK5103.2 .B384 2015Online resources: Click to View
Contents:
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Introduction -- List of Acronyms -- 1: Ad Hoc Networks: Study and Discussion of Performance -- 1.1. Introduction -- 1.2. Concepts specific to ad hoc networks -- 1.2.1. Topology -- 1.2.2. Connectivity -- 1.2.3. Mobility -- 1.2.4. Networks: wireless mesh network (WMN), wireless sensor networks (WSN) and mobile ad hoc network (MANET) -- 1.2.4.1. Wireless Mesh Network -- 1.2.4.2. WSN sensor network -- 1.2.4.3. MANET mobile network -- 1.2.5. Routing -- 1.2.5.1. Proactive protocols -- 1.2.5.2. Reactive protocols -- 1.2.5.3. Hybrid protocols -- 1.2.6. Weak security -- 1.2.7. Access to the environment -- 1.3. MAC protocols in mobile ad hoc networks -- 1.3.1. ALOHA -- 1.3.1.1. Slotted ALOHA (SALOHA) -- 1.3.1.2. Multi-copy ALOHA -- 1.3.2. CSMA -- 1.3.2.1. CSMA with collision detection (CSMA/CD) -- 1.3.2.2. Standard 802.11 and the DCF algorithm -- 1.3.2.3. CSMA/CA -- 1.3.2.3.1. ACK principle -- 1.3.2.3.2. Definitions of IFS -- 1.3.2.3.3. Backoff -- 1.3.2.3.4. RTS/CTS -- 1.3.2.3.5. MAC frames in 802.11 -- 1.4. Energy consumption in ad hoc networks -- 1.4.1. Energy overconsumption and/or waste -- 1.4.2. Toward more efficient energy consumption -- 1.4.2.1. Data link layer -- 1.4.2.1.1. MAC sublayer -- 1.4.2.1.2. LLC sublayer -- 1.5. Conclusion -- 2: Game Theory and Communication Networks -- 2.1. Introduction -- 2.2. Introductory concepts in game theory -- 2.2.1. Game -- 2.2.2. Player -- 2.2.3. Strategy (pure and mixed) -- 2.2.4. Utility -- 2.2.5. General classification of games -- 2.2.5.1. Cooperative and non-cooperative games -- 2.2.5.2. Normal-form and extensive-form -- 2.2.5.3. Perfect and imperfect information games -- 2.2.5.4. Repeated games -- 2.2.6. Equilibrium -- 2.2.6.1. Best response and dominant strategy -- 2.2.6.2. Dominant strategy equilibrium -- 2.3. Nash equilibrium -- 2.3.1. Definition.
2.3.2. Existence -- 2.3.3. Uniqueness -- 2.3.4. Specific cases -- 2.4. Famous games -- 2.4.1. The prisoner's dilemma -- 2.4.2. Cournot duopoly -- 2.5. Applications to wireless networks -- 2.5.1. Routing game -- 2.5.2. Power control game -- 2.6. Conclusion -- 3: Games in SALOHA Networks -- 3.1. Introduction -- 3.2. Functioning of the SALOHA algorithm -- 3.2.1. Study of stability -- 3.2.2. Transmission time -- 3.3. Modeling of node behavior in SALOHA with a strategic coding game -- 3.3.1. Issues -- 3.3.2. RS erasure codes -- 3.3.3. The impact of erasure encoding on SALOHA -- 3.3.4. Description of game model -- 3.3.5. Study of utility -- 3.3.6. Discussion of equilibrium -- 3.3.6.1. Existence -- 3.3.6.2. Evaluation -- 3.4. SALOHA network performance at Nash equilibrium -- 3.4.1. Coding cost -- 3.4.2. Loss rate -- 3.4.3. Output -- 3.4.4. Stability -- 3.4.5. Transmission time -- 3.5. Conclusion -- 4: Games in CSMA Networks -- 4.1. Introduction -- 4.2. CMSA performance -- 4.3. Sources of problems in CSMA networks -- 4.4. Modeling of node behavior in CSMA using a strategic coding game -- 4.4.1. Game model analysis -- 4.4.2. Utility function -- 4.4.3. Discussion of equilibrium -- 4.5. CSMA performances at equilibrium -- 4.5.1. Coding/decoding price (cost) -- 4.5.2. Output -- 4.5.3. Transmission time -- 4.5.4. Energy optimization at equilibrium -- 4.6. Conclusion -- Conclusion -- C.1. Integrating a local route maintenance mechanism into each node -- C.2. Integrating a load-balancing mechanism into autonomous systems -- C.3. Reduce response time to route requests -- C.4. Securing the network -- Bibliography -- Index.
Summary: Random SALOHA and CSMA protocols that are used to access MAC in ad hoc networks are very small compared to the multiple and spontaneous use of the transmission channel. So they have low immunity to the problems of packet collisions. Indeed, the transmission time is the critical factor in the operation of such networks. The simulations demonstrate the positive impact of erasure codes on the throughput of the transmission in ad hoc networks. However, the network still suffers from the intermittency and volatility of its efficiency throughout its operation, and it switches quickly to the saturation zone. In this context, game theory has demonstrated his ability to lead the network to a more efficient equilibrium. This, we were led to propose our model code set that formalizes the behavior of nodes during transmission within SALOHA networks and CSMA respectively.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Foreword -- Introduction -- List of Acronyms -- 1: Ad Hoc Networks: Study and Discussion of Performance -- 1.1. Introduction -- 1.2. Concepts specific to ad hoc networks -- 1.2.1. Topology -- 1.2.2. Connectivity -- 1.2.3. Mobility -- 1.2.4. Networks: wireless mesh network (WMN), wireless sensor networks (WSN) and mobile ad hoc network (MANET) -- 1.2.4.1. Wireless Mesh Network -- 1.2.4.2. WSN sensor network -- 1.2.4.3. MANET mobile network -- 1.2.5. Routing -- 1.2.5.1. Proactive protocols -- 1.2.5.2. Reactive protocols -- 1.2.5.3. Hybrid protocols -- 1.2.6. Weak security -- 1.2.7. Access to the environment -- 1.3. MAC protocols in mobile ad hoc networks -- 1.3.1. ALOHA -- 1.3.1.1. Slotted ALOHA (SALOHA) -- 1.3.1.2. Multi-copy ALOHA -- 1.3.2. CSMA -- 1.3.2.1. CSMA with collision detection (CSMA/CD) -- 1.3.2.2. Standard 802.11 and the DCF algorithm -- 1.3.2.3. CSMA/CA -- 1.3.2.3.1. ACK principle -- 1.3.2.3.2. Definitions of IFS -- 1.3.2.3.3. Backoff -- 1.3.2.3.4. RTS/CTS -- 1.3.2.3.5. MAC frames in 802.11 -- 1.4. Energy consumption in ad hoc networks -- 1.4.1. Energy overconsumption and/or waste -- 1.4.2. Toward more efficient energy consumption -- 1.4.2.1. Data link layer -- 1.4.2.1.1. MAC sublayer -- 1.4.2.1.2. LLC sublayer -- 1.5. Conclusion -- 2: Game Theory and Communication Networks -- 2.1. Introduction -- 2.2. Introductory concepts in game theory -- 2.2.1. Game -- 2.2.2. Player -- 2.2.3. Strategy (pure and mixed) -- 2.2.4. Utility -- 2.2.5. General classification of games -- 2.2.5.1. Cooperative and non-cooperative games -- 2.2.5.2. Normal-form and extensive-form -- 2.2.5.3. Perfect and imperfect information games -- 2.2.5.4. Repeated games -- 2.2.6. Equilibrium -- 2.2.6.1. Best response and dominant strategy -- 2.2.6.2. Dominant strategy equilibrium -- 2.3. Nash equilibrium -- 2.3.1. Definition.

2.3.2. Existence -- 2.3.3. Uniqueness -- 2.3.4. Specific cases -- 2.4. Famous games -- 2.4.1. The prisoner's dilemma -- 2.4.2. Cournot duopoly -- 2.5. Applications to wireless networks -- 2.5.1. Routing game -- 2.5.2. Power control game -- 2.6. Conclusion -- 3: Games in SALOHA Networks -- 3.1. Introduction -- 3.2. Functioning of the SALOHA algorithm -- 3.2.1. Study of stability -- 3.2.2. Transmission time -- 3.3. Modeling of node behavior in SALOHA with a strategic coding game -- 3.3.1. Issues -- 3.3.2. RS erasure codes -- 3.3.3. The impact of erasure encoding on SALOHA -- 3.3.4. Description of game model -- 3.3.5. Study of utility -- 3.3.6. Discussion of equilibrium -- 3.3.6.1. Existence -- 3.3.6.2. Evaluation -- 3.4. SALOHA network performance at Nash equilibrium -- 3.4.1. Coding cost -- 3.4.2. Loss rate -- 3.4.3. Output -- 3.4.4. Stability -- 3.4.5. Transmission time -- 3.5. Conclusion -- 4: Games in CSMA Networks -- 4.1. Introduction -- 4.2. CMSA performance -- 4.3. Sources of problems in CSMA networks -- 4.4. Modeling of node behavior in CSMA using a strategic coding game -- 4.4.1. Game model analysis -- 4.4.2. Utility function -- 4.4.3. Discussion of equilibrium -- 4.5. CSMA performances at equilibrium -- 4.5.1. Coding/decoding price (cost) -- 4.5.2. Output -- 4.5.3. Transmission time -- 4.5.4. Energy optimization at equilibrium -- 4.6. Conclusion -- Conclusion -- C.1. Integrating a local route maintenance mechanism into each node -- C.2. Integrating a load-balancing mechanism into autonomous systems -- C.3. Reduce response time to route requests -- C.4. Securing the network -- Bibliography -- Index.

Random SALOHA and CSMA protocols that are used to access MAC in ad hoc networks are very small compared to the multiple and spontaneous use of the transmission channel. So they have low immunity to the problems of packet collisions. Indeed, the transmission time is the critical factor in the operation of such networks. The simulations demonstrate the positive impact of erasure codes on the throughput of the transmission in ad hoc networks. However, the network still suffers from the intermittency and volatility of its efficiency throughout its operation, and it switches quickly to the saturation zone. In this context, game theory has demonstrated his ability to lead the network to a more efficient equilibrium. This, we were led to propose our model code set that formalizes the behavior of nodes during transmission within SALOHA networks and CSMA respectively.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha