Air Dispersion Modeling : Foundations and Applications.

By: De Visscher, AlexMaterial type: TextTextPublisher: Somerset : Wiley, 2013Copyright date: ©2014Edition: 1st edDescription: 1 online resource (662 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781118723074Subject(s): Air -- Pollution -- Simulation methods | Atmospheric diffusion -- Simulation methodsGenre/Form: Electronic books.Additional physical formats: Print version:: Air Dispersion Modeling : Foundations and ApplicationsDDC classification: 628.53011 LOC classification: TD883.1 -- .D48 2014ebOnline resources: Click to View
Contents:
Intro -- Air Dispersion Modeling: Foundations and Applications -- Copyright -- Contents -- Preface -- List of Symbols -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Types of Air Dispersion Models -- 1.2.1 Gaussian Plume Models -- 1.2.2 Gaussian Puff Models -- 1.2.3 Stochastic Lagrangian Particle Models -- 1.2.4 Eulerian Advection and Dispersion Models -- 1.2.5 Computational Fluid Dynamics -- 1.3 Standard Conditions for Temperature and Pressure -- 1.4 Concentration Units in the Gas Phase -- 1.5 Units -- 1.6 Constants and Approximately Constant Variables -- 1.7 Frequently Used Greek Symbols -- Problems -- References -- Chapter 2 An Air Dispersion Modeling Primer -- 2.1 Introduction -- 2.2 Basic Concepts of Air Dispersion -- 2.3 Gaussian Dispersion Model -- 2.3.1 Assumptions Underlying the Gaussian Plume Concept -- 2.3.2 Quantitative Description -- 2.3.3 Refinements -- 2.4 Plume Rise -- 2.4.1 Plume Rise Correlations -- 2.4.2 Critical Wind Speed -- 2.4.3 Rules of Thumb -- 2.5 Need for Refinements to the Basic Gaussian Plume Dispersion Model -- Problems -- MaterIals OnlIne -- References -- Chapter 3 Air Pollutants: An Overview -- 3.1 Introduction -- 3.2 Types of Air Pollution -- 3.2.1 Sulfur Compounds -- 3.2.2 Nitrogen Compounds -- 3.2.3 Volatile Organic Compounds -- 3.2.4 Inorganic Carbon -- 3.2.5 Ozone -- 3.2.6 Particulate Matter -- 3.2.7 Metals -- 3.2.8 Air Pollution and Health -- 3.2.9 Global Warming -- 3.2.10 Air Pollution and Visibility -- 3.2.11 Odor Nuisance -- Problems -- References -- Chapter 4 Regulation of Air Quality and Air Quality Modeling -- 4.1 Introduction -- 4.2 Air Quality Regulation -- 4.3 Air Dispersion Modeling Guidelines -- References -- Chapter 5 Meteorology for Air Dispersion Modelers -- 5.1 Introduction -- 5.2 Structure of the Atmosphere -- 5.3 Altitude Dependence of Barometric Pressure.
5.4 Height Dependence of Temperature-Adiabatic Case -- 5.4.1 Adiabatic Lapse Rate -- 5.4.2 Potential Temperature -- 5.5 Stability -- 5.5.1 General Description of Stability -- 5.5.2 Stability Parameter -- 5.5.3 Diurnal Cycle of Stability -- 5.6 Heat Balance -- 5.7 Wind Speed Profile -- 5.7.1 Case 1: Smooth Surface, Adiabatic Conditions -- 5.7.2 Case 2: Rough Surface, Adiabatic Conditions -- 5.7.3 Case 3: Rough Surface, Nonneutral Conditions -- 5.8 Temperature Profile Revisited: Nonneutral Conditions -- 5.9 Heat Balance Revisited: Stable Conditions -- 5.10 Mixing Layer Height -- 5.11 Concept of Turbulence -- 5.11.1 Basic Properties of Turbulence -- 5.11.2 Measures of Turbulence -- 5.11.3 Similarity Theory and Turbulence -- 5.11.4 Covariance and Turbulence -- 5.11.5 Introduction to Eddy Diffusivity and Gradient Transport Theory -- 5.12 Special Topics in Meteorology -- 5.12.1 Convective Cycles: Qualitative Description -- 5.12.2 Internal Boundary Layer: Qualitative Description -- 5.12.3 Plume Shapes -- 5.12.4 Virtual Temperature -- 5.13 Advanced Topics in Meteorology -- 5.13.1 Convective Cycles: Quantitative Description -- 5.13.2 Simple Convective Boundary Layer Model -- 5.13.3 Internal Boundary Layer: Quantitative Description -- 5.13.4 Effect of Complex Terrain in Meteorology -- 5.14 Summary of Main Equations -- Problems -- Materials Online -- References -- Chapter 6 Gaussian Dispersion Modeling: An In-Depth Study -- 6.1 Introduction -- 6.2 Gaussian Plume Models -- 6.3 Parameterizations Based on Stability Classes -- 6.4 Gaussian Plume Dispersion Short Cut -- 6.5 Plume Dispersion Modifiers -- 6.6 Continuous Parameterization for Gaussian Dispersion Models -- 6.6.1 Introduction: From Turbulence to Dispersion -- 6.6.2 Autocorrelation of Wind Speed -- 6.6.3 Taylor's Hypothesis -- 6.6.4 Lagrangian Frame of Reference.
6.6.5 Practical Schemes for Continuous Parameterizations -- 6.6.6 Dispersion Parameters Based on the Autocorrelation Function -- 6.6.7 More T i,L Relationships -- 6.7 Gaussian Plume Models for Nonpoint Sources -- 6.8 Virtual Source Concept -- 6.9 Special Issues -- 6.9.1 Probability Density Functions for Plumes in Convective Boundary Layers -- 6.9.2 Emission from a Ground-Level Source -- 6.10 Gaussian Puff Modeling -- 6.10.1 Introduction -- 6.10.2 Puff Models -- 6.10.3 Stochastic Puff Models: Parameterization for Instantaneous Puffs -- 6.11 Advanced Topics in Meteorology -- 6.11.1 Spectral Properties of Turbulence -- 6.11.2 Turbulent Energy Dissipation: Kolmogorov Theory -- 6.12 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 7 Plume-Atmosphere Interactions -- 7.1 Introduction -- 7.2 Plume Rise -- 7.2.1 Introduction -- 7.2.2 Plume Rise Theory -- 7.2.3 Flare Plume Rise -- 7.2.4 Numerical Plume Rise Calculations -- 7.3 Plume Downwash: Prime (Plume Rise Model Enhancements) -- 7.3.1 Introduction -- 7.3.2 Wake Size Calculations -- 7.3.3 Streamline Deflection Calculation -- 7.3.4 Plume-Wake Interaction Calculation -- 7.4 Behavior of Denser-than-Air Plumes -- 7.5 Deposition -- 7.5.1 Dry Deposition -- 7.5.2 Wet Deposition -- 7.5.3 Gaussian Dispersion Models with Deposition -- 7.6 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 8 Gaussian Model Approaches in Urban or Industrial Terrain -- 8.1 Introduction -- 8.2 Wind Flow Around Obstacles -- 8.3 Surface Roughness and Displacement Height in Urban and Industrial Terrain -- 8.3.1 Introduction -- 8.3.2 Determination of z0 and d -- 8.4 Wind Speed Profiles near the Surface: Deviations from Similarity Theory -- 8.4.1 Theoretical Background -- 8.4.2 Simple Approach -- 8.4.3 Exponential Wind Speed Profile -- 8.4.4 Junction Methods.
8.4.5 Other Canopy Wind Speed Descriptions -- 8.5 Turbulence in Urban Terrain -- 8.6 Dispersion Calculations in Urban Terrain near the Surface -- 8.6.1 Introduction -- 8.6.2 Gaussian Model Formulation near the Surface -- 8.6.3 Near Surface Dispersion Parameter Calculation Schemes -- 8.7 An Example -- 8.8 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 9 Stochastic Modeling Approaches -- 9.1 Introduction -- 9.2 Fundamentals of Stochastic Air Dispersion Modeling -- 9.2.1 Introduction: Properties of the Langevin Equation -- 9.2.2 Modifying the Langevin Equation for Air Dispersion Modeling: Homogeneous Atmosphere -- 9.2.3 Langevin Equation in Heterogeneous Atmosphere -- 9.2.4 Turbulence Data for Stochastic Lagrangian Models -- 9.2.5 Stochastic Lagrangian Particle Modeling of the Convective Boundary Layer -- 9.3 Numerical Aspects of Stochastic Modeling -- 9.4 Stochastic Lagrangian Calculation Examples -- 9.5 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 10 Computational Fluid Dynamics and Meteorological Modeling -- 10.1 Introduction -- 10.2 CFD Model Formulation: Fundamentals -- 10.2.1 The Navier-Stokes Equation -- 10.2.2 The Material and Energy Balance -- 10.3 Reynolds-Averaged Navier-Stokes ( RANS) Techniques -- 10.3.1 Averaging the Navier-Stokes Equations -- 10.3.2 Closing the Navier-Stokes Equations -- 10.3.3 Reynolds-Averaged Material and Energy Balances -- 10.4 Large Eddy Simulation (LES) -- 10.4.1 Introduction -- 10.4.2 Turbulence Modeling in LES -- 10.5 Numerical Methods in CFD -- 10.6 Meteorological Modeling -- 10.7 Summary of the Main Equations -- References -- Chapter 11 Eulerian Model Approaches -- 11.1 Introduction -- 11.2 Governing Equations of Eulerian Dispersion Models -- 11.3 Closing the Material Balance for Turbulent Motion -- 11.3.1 Local Closure.
11.3.2 Nonlocal Closure -- 11.4 Atmospheric Chemistry -- 11.4.1 Introduction -- 11.4.2 Introduction to Chemical Kinetics -- 11.4.3 Introduction to Photochemical Kinetics -- 11.4.4 Gas-Phase Reactions in Tropospheric Chemistry -- 11.4.5 Chemistry of Aerosol Formation in the Troposphere -- 11.5 Numerical Aspects of Eulerian Dispersion Modeling -- 11.5.1 Advection -- 11.5.2 Diffusion/Dispersion -- 11.5.3 Chemical Reaction Kinetics -- 11.5.4 Boundary Conditions -- 11.5.5 Plume-in-Grid Modeling -- 11.6 Summary of the Main Equations -- Problems -- References -- Chapter 12 Practical Aspects of Air Dispersion Modeling -- 12.1 Introduction -- 12.2 Source Characterization and Source Modeling -- 12.3 Coordinate Systems -- 12.4 Data Handling -- 12.5 Model Validation -- References -- Chapter 13 ISC3 and SCREEN3: A Detailed Description -- 13.1 Introduction -- 13.2 ISC3 Model Description -- 13.3 SCREEN3 Model Description -- References -- Chapter 14 AERMOD and AERMET: A Detailed Description : A -- 14.1 Introduction -- 14.2 Description of AERMET -- 14.3 Description of AERMOD -- 14.3.1 Wind Speed Profile -- 14.3.2 Potential Temperature Profile -- 14.3.3 Profile of Vertical Turbulence -- 14.3.4 Profile of Horizontal Turbulence -- 14.3.5 Calculation of Effective Variables -- 14.3.6 Complex Terrain in AERMOD -- 14.3.7 Concentration Predictions in AERMOD -- 14.3.8 Dispersion Parameters in AERMOD -- 14.3.9 Plume Rise Calculations in AERMOD -- References -- Chapter 15 CALPUFF and CALMET: A Detailed Description : A -- 15.1 Introduction -- 15.2 Description of CALMET -- 15.2.1 Coordinate System -- 15.2.2 Introduction to Wind Field Calculations in CALMET -- 15.2.3 Initial Guess Wind Field Generation in CALMET -- 15.2.4 Step 1: Wind Field Formulation in CALMET -- 15.2.5 Step 2: Wind Field Formulation in CALMET -- 15.2.6 Determination of Stability in CALMET.
15.2.7 Precipitation Interpolation.
Summary: A single reference to all aspects of contemporary air dispersion modeling The practice of air dispersion modeling has changed dramatically in recent years, in large part due to new EPA regulations. Current with the EPA's 40 CFR Part 51, this book serves as a complete reference to both the science and contemporary practice of air dispersion modeling. Throughout the book, author Alex De Visscher guides readers through complex calculations, equation by equation, helping them understand precisely how air dispersion models work, including such popular models as the EPA's AERMOD and CALPUFF. Air Dispersion Modeling begins with a primer that enables readers to quickly grasp basic principles by developing their own air dispersion model. Next, the book offers everything readers need to work with air dispersion models and accurately interpret their results, including: Full chapter dedicated to the meteorological basis of air dispersion Examples throughout the book illustrating how theory translates into practice Extensive discussions of Gaussian, Lagrangian, and Eulerian air dispersion modeling Detailed descriptions of the AERMOD and CALPUFF model formulations This book also includes access to a website with Microsoft® Excel and MATLAB® files that contain examples of air dispersion model calculations. Readers can work with these examples to perform their own calculations. With its comprehensive and up-to-date coverage, Air Dispersion Modeling is recommended for environmental engineers and meteorologists who need to perform and evaluate environmental impact assessments. The book's many examples and step-by-step instructions also make it ideal as a textbook for students in the fields of environmental engineering, meteorology, chemical engineering, and environmental sciences.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Air Dispersion Modeling: Foundations and Applications -- Copyright -- Contents -- Preface -- List of Symbols -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Types of Air Dispersion Models -- 1.2.1 Gaussian Plume Models -- 1.2.2 Gaussian Puff Models -- 1.2.3 Stochastic Lagrangian Particle Models -- 1.2.4 Eulerian Advection and Dispersion Models -- 1.2.5 Computational Fluid Dynamics -- 1.3 Standard Conditions for Temperature and Pressure -- 1.4 Concentration Units in the Gas Phase -- 1.5 Units -- 1.6 Constants and Approximately Constant Variables -- 1.7 Frequently Used Greek Symbols -- Problems -- References -- Chapter 2 An Air Dispersion Modeling Primer -- 2.1 Introduction -- 2.2 Basic Concepts of Air Dispersion -- 2.3 Gaussian Dispersion Model -- 2.3.1 Assumptions Underlying the Gaussian Plume Concept -- 2.3.2 Quantitative Description -- 2.3.3 Refinements -- 2.4 Plume Rise -- 2.4.1 Plume Rise Correlations -- 2.4.2 Critical Wind Speed -- 2.4.3 Rules of Thumb -- 2.5 Need for Refinements to the Basic Gaussian Plume Dispersion Model -- Problems -- MaterIals OnlIne -- References -- Chapter 3 Air Pollutants: An Overview -- 3.1 Introduction -- 3.2 Types of Air Pollution -- 3.2.1 Sulfur Compounds -- 3.2.2 Nitrogen Compounds -- 3.2.3 Volatile Organic Compounds -- 3.2.4 Inorganic Carbon -- 3.2.5 Ozone -- 3.2.6 Particulate Matter -- 3.2.7 Metals -- 3.2.8 Air Pollution and Health -- 3.2.9 Global Warming -- 3.2.10 Air Pollution and Visibility -- 3.2.11 Odor Nuisance -- Problems -- References -- Chapter 4 Regulation of Air Quality and Air Quality Modeling -- 4.1 Introduction -- 4.2 Air Quality Regulation -- 4.3 Air Dispersion Modeling Guidelines -- References -- Chapter 5 Meteorology for Air Dispersion Modelers -- 5.1 Introduction -- 5.2 Structure of the Atmosphere -- 5.3 Altitude Dependence of Barometric Pressure.

5.4 Height Dependence of Temperature-Adiabatic Case -- 5.4.1 Adiabatic Lapse Rate -- 5.4.2 Potential Temperature -- 5.5 Stability -- 5.5.1 General Description of Stability -- 5.5.2 Stability Parameter -- 5.5.3 Diurnal Cycle of Stability -- 5.6 Heat Balance -- 5.7 Wind Speed Profile -- 5.7.1 Case 1: Smooth Surface, Adiabatic Conditions -- 5.7.2 Case 2: Rough Surface, Adiabatic Conditions -- 5.7.3 Case 3: Rough Surface, Nonneutral Conditions -- 5.8 Temperature Profile Revisited: Nonneutral Conditions -- 5.9 Heat Balance Revisited: Stable Conditions -- 5.10 Mixing Layer Height -- 5.11 Concept of Turbulence -- 5.11.1 Basic Properties of Turbulence -- 5.11.2 Measures of Turbulence -- 5.11.3 Similarity Theory and Turbulence -- 5.11.4 Covariance and Turbulence -- 5.11.5 Introduction to Eddy Diffusivity and Gradient Transport Theory -- 5.12 Special Topics in Meteorology -- 5.12.1 Convective Cycles: Qualitative Description -- 5.12.2 Internal Boundary Layer: Qualitative Description -- 5.12.3 Plume Shapes -- 5.12.4 Virtual Temperature -- 5.13 Advanced Topics in Meteorology -- 5.13.1 Convective Cycles: Quantitative Description -- 5.13.2 Simple Convective Boundary Layer Model -- 5.13.3 Internal Boundary Layer: Quantitative Description -- 5.13.4 Effect of Complex Terrain in Meteorology -- 5.14 Summary of Main Equations -- Problems -- Materials Online -- References -- Chapter 6 Gaussian Dispersion Modeling: An In-Depth Study -- 6.1 Introduction -- 6.2 Gaussian Plume Models -- 6.3 Parameterizations Based on Stability Classes -- 6.4 Gaussian Plume Dispersion Short Cut -- 6.5 Plume Dispersion Modifiers -- 6.6 Continuous Parameterization for Gaussian Dispersion Models -- 6.6.1 Introduction: From Turbulence to Dispersion -- 6.6.2 Autocorrelation of Wind Speed -- 6.6.3 Taylor's Hypothesis -- 6.6.4 Lagrangian Frame of Reference.

6.6.5 Practical Schemes for Continuous Parameterizations -- 6.6.6 Dispersion Parameters Based on the Autocorrelation Function -- 6.6.7 More T i,L Relationships -- 6.7 Gaussian Plume Models for Nonpoint Sources -- 6.8 Virtual Source Concept -- 6.9 Special Issues -- 6.9.1 Probability Density Functions for Plumes in Convective Boundary Layers -- 6.9.2 Emission from a Ground-Level Source -- 6.10 Gaussian Puff Modeling -- 6.10.1 Introduction -- 6.10.2 Puff Models -- 6.10.3 Stochastic Puff Models: Parameterization for Instantaneous Puffs -- 6.11 Advanced Topics in Meteorology -- 6.11.1 Spectral Properties of Turbulence -- 6.11.2 Turbulent Energy Dissipation: Kolmogorov Theory -- 6.12 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 7 Plume-Atmosphere Interactions -- 7.1 Introduction -- 7.2 Plume Rise -- 7.2.1 Introduction -- 7.2.2 Plume Rise Theory -- 7.2.3 Flare Plume Rise -- 7.2.4 Numerical Plume Rise Calculations -- 7.3 Plume Downwash: Prime (Plume Rise Model Enhancements) -- 7.3.1 Introduction -- 7.3.2 Wake Size Calculations -- 7.3.3 Streamline Deflection Calculation -- 7.3.4 Plume-Wake Interaction Calculation -- 7.4 Behavior of Denser-than-Air Plumes -- 7.5 Deposition -- 7.5.1 Dry Deposition -- 7.5.2 Wet Deposition -- 7.5.3 Gaussian Dispersion Models with Deposition -- 7.6 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 8 Gaussian Model Approaches in Urban or Industrial Terrain -- 8.1 Introduction -- 8.2 Wind Flow Around Obstacles -- 8.3 Surface Roughness and Displacement Height in Urban and Industrial Terrain -- 8.3.1 Introduction -- 8.3.2 Determination of z0 and d -- 8.4 Wind Speed Profiles near the Surface: Deviations from Similarity Theory -- 8.4.1 Theoretical Background -- 8.4.2 Simple Approach -- 8.4.3 Exponential Wind Speed Profile -- 8.4.4 Junction Methods.

8.4.5 Other Canopy Wind Speed Descriptions -- 8.5 Turbulence in Urban Terrain -- 8.6 Dispersion Calculations in Urban Terrain near the Surface -- 8.6.1 Introduction -- 8.6.2 Gaussian Model Formulation near the Surface -- 8.6.3 Near Surface Dispersion Parameter Calculation Schemes -- 8.7 An Example -- 8.8 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 9 Stochastic Modeling Approaches -- 9.1 Introduction -- 9.2 Fundamentals of Stochastic Air Dispersion Modeling -- 9.2.1 Introduction: Properties of the Langevin Equation -- 9.2.2 Modifying the Langevin Equation for Air Dispersion Modeling: Homogeneous Atmosphere -- 9.2.3 Langevin Equation in Heterogeneous Atmosphere -- 9.2.4 Turbulence Data for Stochastic Lagrangian Models -- 9.2.5 Stochastic Lagrangian Particle Modeling of the Convective Boundary Layer -- 9.3 Numerical Aspects of Stochastic Modeling -- 9.4 Stochastic Lagrangian Calculation Examples -- 9.5 Summary of the Main Equations -- Problems -- Materials Online -- References -- Chapter 10 Computational Fluid Dynamics and Meteorological Modeling -- 10.1 Introduction -- 10.2 CFD Model Formulation: Fundamentals -- 10.2.1 The Navier-Stokes Equation -- 10.2.2 The Material and Energy Balance -- 10.3 Reynolds-Averaged Navier-Stokes ( RANS) Techniques -- 10.3.1 Averaging the Navier-Stokes Equations -- 10.3.2 Closing the Navier-Stokes Equations -- 10.3.3 Reynolds-Averaged Material and Energy Balances -- 10.4 Large Eddy Simulation (LES) -- 10.4.1 Introduction -- 10.4.2 Turbulence Modeling in LES -- 10.5 Numerical Methods in CFD -- 10.6 Meteorological Modeling -- 10.7 Summary of the Main Equations -- References -- Chapter 11 Eulerian Model Approaches -- 11.1 Introduction -- 11.2 Governing Equations of Eulerian Dispersion Models -- 11.3 Closing the Material Balance for Turbulent Motion -- 11.3.1 Local Closure.

11.3.2 Nonlocal Closure -- 11.4 Atmospheric Chemistry -- 11.4.1 Introduction -- 11.4.2 Introduction to Chemical Kinetics -- 11.4.3 Introduction to Photochemical Kinetics -- 11.4.4 Gas-Phase Reactions in Tropospheric Chemistry -- 11.4.5 Chemistry of Aerosol Formation in the Troposphere -- 11.5 Numerical Aspects of Eulerian Dispersion Modeling -- 11.5.1 Advection -- 11.5.2 Diffusion/Dispersion -- 11.5.3 Chemical Reaction Kinetics -- 11.5.4 Boundary Conditions -- 11.5.5 Plume-in-Grid Modeling -- 11.6 Summary of the Main Equations -- Problems -- References -- Chapter 12 Practical Aspects of Air Dispersion Modeling -- 12.1 Introduction -- 12.2 Source Characterization and Source Modeling -- 12.3 Coordinate Systems -- 12.4 Data Handling -- 12.5 Model Validation -- References -- Chapter 13 ISC3 and SCREEN3: A Detailed Description -- 13.1 Introduction -- 13.2 ISC3 Model Description -- 13.3 SCREEN3 Model Description -- References -- Chapter 14 AERMOD and AERMET: A Detailed Description : A -- 14.1 Introduction -- 14.2 Description of AERMET -- 14.3 Description of AERMOD -- 14.3.1 Wind Speed Profile -- 14.3.2 Potential Temperature Profile -- 14.3.3 Profile of Vertical Turbulence -- 14.3.4 Profile of Horizontal Turbulence -- 14.3.5 Calculation of Effective Variables -- 14.3.6 Complex Terrain in AERMOD -- 14.3.7 Concentration Predictions in AERMOD -- 14.3.8 Dispersion Parameters in AERMOD -- 14.3.9 Plume Rise Calculations in AERMOD -- References -- Chapter 15 CALPUFF and CALMET: A Detailed Description : A -- 15.1 Introduction -- 15.2 Description of CALMET -- 15.2.1 Coordinate System -- 15.2.2 Introduction to Wind Field Calculations in CALMET -- 15.2.3 Initial Guess Wind Field Generation in CALMET -- 15.2.4 Step 1: Wind Field Formulation in CALMET -- 15.2.5 Step 2: Wind Field Formulation in CALMET -- 15.2.6 Determination of Stability in CALMET.

15.2.7 Precipitation Interpolation.

A single reference to all aspects of contemporary air dispersion modeling The practice of air dispersion modeling has changed dramatically in recent years, in large part due to new EPA regulations. Current with the EPA's 40 CFR Part 51, this book serves as a complete reference to both the science and contemporary practice of air dispersion modeling. Throughout the book, author Alex De Visscher guides readers through complex calculations, equation by equation, helping them understand precisely how air dispersion models work, including such popular models as the EPA's AERMOD and CALPUFF. Air Dispersion Modeling begins with a primer that enables readers to quickly grasp basic principles by developing their own air dispersion model. Next, the book offers everything readers need to work with air dispersion models and accurately interpret their results, including: Full chapter dedicated to the meteorological basis of air dispersion Examples throughout the book illustrating how theory translates into practice Extensive discussions of Gaussian, Lagrangian, and Eulerian air dispersion modeling Detailed descriptions of the AERMOD and CALPUFF model formulations This book also includes access to a website with Microsoft® Excel and MATLAB® files that contain examples of air dispersion model calculations. Readers can work with these examples to perform their own calculations. With its comprehensive and up-to-date coverage, Air Dispersion Modeling is recommended for environmental engineers and meteorologists who need to perform and evaluate environmental impact assessments. The book's many examples and step-by-step instructions also make it ideal as a textbook for students in the fields of environmental engineering, meteorology, chemical engineering, and environmental sciences.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

Powered by Koha