Fatigue of Materials and Structures : Application to Design.
Material type: TextPublisher: Somerset : John Wiley & Sons, Incorporated, 2011Copyright date: ©2011Edition: 1st edDescription: 1 online resource (360 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781118616512Subject(s): Materials -- Fatigue | Materials -- Mechanical properties | MicrostructureGenre/Form: Electronic books.Additional physical formats: Print version:: Fatigue of Materials and Structures : Application to DesignDDC classification: 620.1/126 LOC classification: TA418.38 -- .F3748 2011ebOnline resources: Click to ViewCover -- Fatigue of Materials and Structures -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Chapter 1. Multiaxial Fatigue -- 1.1 Introduction -- 1.1.1. Variables in a plane -- 1.1.2. Invariants -- 1.1.3. Classification of the cracking modes -- 1.2. Experimental aspects -- 1.2.1. Multiaxial fatigue experiments -- 1.2.2. Main results -- 1.2.3. Notations -- 1.3. Criteria specific to the unlimited endurance domain -- 1.3.1. Background -- 1.3.2. Global criteria -- 1.3.3. Critical plane criteria -- 1.3.4. Relationship between energetic and mesoscopic criteria -- 1.4. Low cycle fatigue criteria -- 1.4.1. Brown-Miller -- 1.4.2. SWT criteria -- 1.4.3. Jacquelin criterion -- 1.4.4. Additive criteria under sliding and stress amplitude -- 1.4.5. Onera model -- 1.5. Calculating methods of the lifetime under multiaxial conditions -- 1.5.1. Lifetime at N cycles for a periodic loading -- 1.5.2. Damage cumulation -- 1.5.3. Calculation methods -- 1.6. Conclusion -- 1.7. Bibliography -- Chapter 2. Cumulative Damage -- 2.1. Introduction -- 2.2. Nonlinear fatigue cumulative damage -- 2.2.1. Main observations -- 2.2.2. Various types of nonlinear cumulative damage models -- 2.2.3. Possible definitions of the damage variable -- 2.3. A nonlinear cumulative fatigue damage model -- 2.3.1. General form -- 2.3.2. Special forms of functions F and G -- 2.3.3. Application under complex loadings -- 2.4. Damage law of incremental type -- 2.4.1. Damage accumulation in strain or energy -- 2.4.2. Lemaître's formulation -- 2.4.3. Other incremental models -- 2.5. Cumulative damage under fatigue-creep conditions -- 2.5.1. Rabotnov-Kachanov creep damage law -- 2.5.2. Fatigue damage -- 2.5.3. Creep-fatigue interaction -- 2.5.4. Practical application -- 2.5.5. Fatigue-oxidation-creep interaction -- 2.6. Conclusion -- 2.7. Bibliography.
Chapter 3. Damage Tolerance Design -- 3.1. Background -- 3.2. Evolution of the design concept of "fatigue" phenomenon -- 3.2.1. First approach to fatigue resistance -- 3.2.2. The "damage tolerance" concept -- 3.2.3. Consideration of "damage tolerance" -- 3.3. Impact of damage tolerance on design -- 3.3.1. "Structural" impact -- 3.3.2. "Material" impact -- 3.4. Calculation of a "stress intensity factor" -- 3.4.1. Use of the "handbook" (simple cases) -- 3.4.2. Use of the finite element method: simple and complex cases -- 3.4.3. A simple method to get new configurations -- 3.4.4. "Superposition" method -- 3.4.5. Superposition method: applicable examples -- 3.4.6. Numerical application exercise -- 3.5. Performing some "damage tolerance" calculations -- 3.5.1. Complementarity of fatigue and damage tolerance -- 3.5.2. Safety coefficients to understand curve a = f(N) -- 3.5.3. Acquisition of the material parameters -- 3.5.4. Negative parameter: corrosion - "corrosion fatigue" -- 3.6. Application to the residual strength of thin sheets -- 3.6.1. Planar panels: Feddersen diagram -- 3.6.2. Case of stiffened panels -- 3.7. Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1. Modeling of the interactions of loading cycles -- 3.7.2. Comparison of predictions with experimental results -- 3.7.3. Rainflow treatment of random loadings -- 3.8. Conclusion -- 3.8.1. Organization of the evolution of "damage tolerance" -- 3.8.2. Structural maintenance program -- 3.8.3. Inspection of structures being used -- 3.9. Damage tolerance within the gigacyclic domain -- 3.9.1. Observations on crack propagation -- 3.9.2. Propagation of a fish-eye with regards to damage tolerance -- 3.9.3. Example of a turbine disk subjected to vibration -- 3.10. Bibliography -- Chapter 4. Defect Influence on the Fatigue Behavior of Metallic Materials.
4.1. Introduction -- 4.2. Some facts -- 4.2.1. Failure observation -- 4.2.2. Endurance limit level -- 4.2.3. Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4. Low cycle fatigue: SN curves -- 4.2.5. Wöhler curve: existence of an endurance limit -- 4.2.6. Summary -- 4.3. Approaches -- 4.3.1. First models -- 4.3.2. Kitagawa diagram -- 4.3.3. Murakami model -- 4.4. A few examples -- 4.4.1. Medium-loaded components: example of as-forged parts: connecting rods - effect of the forging skin -- 4.4.2. High-loaded components: relative importance of cleanliness and surface state - example of the valve spring -- 4.4.3. High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5. Prospects -- 4.5.1. Estimation of lifetimes and their dispersions -- 4.5.2. Fiber orientation -- 4.5.3. Prestressing -- 4.5.4. Corrosion -- 4.5.5. Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6. Gigacycle fatigue -- 4.6. Conclusion -- 4.7. Bibliography -- Chapter 5. Fretting Fatigue: Modeling and Applications -- 5.1 Introduction -- 5.2. Experimental methods -- 5.2.1. Fatigue specimens and contact pads -- 5.2.2. Fatigue S-N data with and without fretting -- 5.2.3. Frictional force measurement -- 5.2.4. Metallography and fractography -- 5.2.5. Mechanisms in fretting fatigue -- 5.3. Fretting fatigue analysis -- 5.3.1. The S-N approach -- 5.3.2. Fretting modeling -- 5.3.3. Two-body contact -- 5.3.4. Fatigue crack initiation -- 5.3.5. Analysis of cracks: the fracture mechanics approach -- 5.3.6. Propagation -- 5.4. Applications under fretting conditions -- 5.4.1. Metallic material: partial slip regime -- 5.4.2. Epoxy polymers: development of cracks under a total slip regime -- 5.5. Palliatives to combat fretting fatigue -- 5.6. Conclusions -- 5.7 Bibliography -- Chapter 6. Contact Fatigue -- 6.1. Introduction.
6.2. Classification of the main types of contact damage -- 6.2.1. Background -- 6.2.2. Damage induced by rolling contacts with or without sliding effect -- 6.2.3. Fretting -- 6.3. A few results on contact mechanics -- 6.3.1. Hertz solution -- 6.3.2. Case of contact with friction under total sliding conditions -- 6.3.3. Case of contact with partial sliding -- 6.3.4. Elastic contact between two solids of different elastic modules -- 6.3.5. 3D elastic contact -- 6.4. Elastic limit -- 6.5. Elastoplastic contact -- 6.5.1. Stationary methods -- 6.5.2. Direct cyclic method -- 6.6. Application to modeling of a few contact fatigue issues -- 6.6.1. General methodology -- 6.6.2. Initiation of fatigue cracks in rails -- 6.6.3. Propagation of initiated cracks -- 6.6.4. Application to fretting fatigue -- 6.7. Conclusion -- 6.8. Bibliography -- Chapter 7. Thermal Fatigue -- 7.1. Introduction -- 7.2. Characterization tests -- 7.2.1. Cyclic mechanical behavior -- 7.2.2. Damage -- 7.3. Constitutive and damage models at variable temperatures -- 7.3.1. Constitutive laws -- 7.3.2. Damage process modeling based on fatigue conditions -- 7.3.3. Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4. Applications -- 7.4.1. Exhaust manifolds in automotive industry -- 7.4.2. Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3. Brake disks in the rail and automotive industries -- 7.4.4. Nuclear industry pipes -- 7.4.5. Simple structures simulating turbine blades -- 7.5. Conclusion -- 7.6. Bibliography -- List of Authors -- Index.
The design of mechanical structures with predictable and improved durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading researchers in the field, this book, along with the complementary books Fatigue of Materials and Structures: Fundamentals and Application to Damage and Design (both also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. This book deals with multiaxial fatigue, thermomechanical fatigue, fretting-fatigue, influence of defects on fatigue life, cumulative damage and damage tolerance, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of materials science and engineering, mechanical, nuclear and aerospace engineering.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.