Gray, Malcolm.

Maser Sources in Astrophysics. - 1 online resource (432 pages) - Cambridge Astrophysics ; v.50 . - Cambridge Astrophysics .

Cover -- MASER SOURCES IN ASTROPHYSICS -- Series -- Title -- Copyright -- Contents -- Preface -- Intended readership -- Previous works -- Major developments since 1992 -- Acknowledgements -- 1 Introduction -- 1.1 Masers and lasers -- 1.2 Atoms and molecules -- 1.3 Electromagnetic radiation -- 1.3.1 Response of media -- 1.3.2 The wave equation -- 1.3.3 Travelling solutions -- 1.3.4 Wave modes in a cavity -- 1.3.5 Energy density and the Planck law -- 1.3.6 Energy density and intensity -- 1.4 Light and molecules interacting -- 1.4.1 The simplest maser -- 1.4.2 Masers and lasers in the laboratory -- 1.4.3 Masers in astrophysics -- 1.5 Concepts of equilibrium -- 1.5.1 Complete thermodynamic equilibrium -- 1.5.2 Local thermodynamic equilibrium -- 1.5.3 NLTE conditions -- 2 Discovery -- 2.1 Mysterium -- 2.2 Raining in Orion -- 2.2.1 Other water maser lines -- 2.3 Searching for X-ogen: SiO masers -- 2.3.1 SiO masers in evolved stars -- 2.4 Methanol -- 2.5 Formaldehyde -- 2.6 Ammonia -- 2.7 Hydrogen cyanide (HCN) -- 2.8 Other masers -- 2.8.1 SiS -- 2.8.2 Carbon monoxide (CO) -- 2.8.3 Atomic hydrogen -- 2.8.4 Carbon dioxide (CO2) -- 2.8.5 Cyanoacetylene (HC3N) -- 2.8.6 Methylidyne (CH) -- 2.8.7 Carbon monosulfide (CS) -- 2.8.8 Free-electron masers -- 2.9 A case study: W3(OH) -- 2.9.1 Continuum observations -- 2.9.2 OH masers -- 2.9.3 H2222O masers -- 2.9.4 CH3333OH masers -- 3 Basic theory -- 3.1 Non-LTE physics -- 3.1.1 Numerical solution -- 3.1.2 Solution by reduction formula -- 3.1.3 ETLA solution -- 3.1.4 Emission and absorption -- 3.1.5 All-process rate coefficients -- 3.1.6 Populations -- 3.2 Inversions -- 3.2.1 Semi-classical approximation -- 3.3 Formal integration of the source function -- 3.4 Radiation transfer -- 3.4.1 Common approximations -- 3.4.2 Examples -- 3.5 Geometry -- 3.5.1 Spherical polar coordinates. 3.5.2 Cylindrical polar coordinates -- 3.5.3 Slab coordinates -- 3.5.4 Solution along a ray -- 3.6 Standard maser equations -- 3.6.1 Solution with complete redistribution -- 3.6.2 Solution with negligible redistribution -- 3.6.3 Partial velocity redistribution -- 3.7 Beaming and geometry -- 3.8 An introduction to polarization -- 3.8.1 The Stokes parameters -- 3.8.2 Zeeman splitting -- 4 Observations of masers -- 4.1 Introduction -- 4.1.1 Observing frequency and bandwidth -- 4.1.2 Radio bands -- 4.1.3 Observing frame -- 4.1.4 Brightness temperature of a source -- 4.1.5 The noise temperature scale -- 4.2 Criteria of merit for radio telescopes -- 4.2.1 Frequency resolution -- 4.2.2 Spatial resolution -- 4.2.3 Field of view -- 4.2.4 Sensitivity -- 4.2.5 Sources of noise -- 4.2.6 Time-varying signals -- 4.3 Single-dish observations -- 4.3.1 Geometry -- 4.3.2 Signal reception -- 4.4 Interferometry -- 4.4.1 Array geometry -- 4.4.2 Sampling rate -- 4.4.3 Source geometry -- 4.4.4 Response to the source -- 4.4.5 The source visibility -- 4.4.6 Van Cittert-Zernicke theorem -- 4.4.7 Closure phase -- 4.4.8 Maser-specific considerations -- 4.4.9 Interferometer sensitivity -- 4.5 Polarimetry issues -- 4.5.1 The parallactic angle -- 5 Maser molecules -- 5.1 Molecular spectroscopy -- 5.2 Collisional rate coefficients -- 5.3 Silicon monoxide (SiO) -- 5.3.1 Transition rules -- 5.3.2 Rate coefficients -- 5.3.3 Zeeman effect -- 5.4 Other simple rotors -- 5.5 Hydroxyl (OH) -- 5.5.1 Lambda-doubling -- 5.5.2 Hyperfine structure -- 5.5.3 Magnetic hyperfine structure -- 5.5.4 Modelling data -- 5.5.5 Methylidyne (CH) -- 5.6 Hydrogen cyanide (HCN) -- 5.6.1 Hyperfine splitting -- 5.6.2 Data for HCN -- 5.7 Ammonia (NH3) -- 5.7.1 Data for NH3 -- 5.8 Water (H2O) -- 5.8.1 Hyperfine and Zeeman structure -- 5.8.2 Modelling data -- 5.9 Formaldehyde (H2CO) -- 5.9.1 Modelling data. 5.10 Methanol (CH3OH) -- 5.10.1 Hyperfine and Zeeman structure -- 5.10.2 Modelling data -- 5.11 Other maser species -- 6 Environments of masers -- 6.1 Galactic star-forming regions -- 6.1.1 Early SFR masers -- 6.1.2 Late SFR masers -- 6.2 Evolved stars -- 6.2.1 Low-mass evolved stars -- 6.2.2 Red supergiants -- 6.3 Planetary nebulae and pPN -- 6.4 Megamasers -- 6.4.1 AGN megamasers -- 6.4.2 Starburst megamasers -- 6.5 Supernova remnants -- 6.6 Comets -- 6.7 Hot stars -- 6.8 Planetary atmospheres -- 6.8.1 Molecular masers -- 6.8.2 Free-electron masers -- 7 Advanced theory -- 7.1 Introduction to semi-classical theory -- 7.1.1 Quantum mechanics of the molecular response -- 7.1.2 Development of the electric field -- 7.1.3 The interaction Hamiltonian -- 7.1.4 The macroscopic polarization -- 7.1.5 A pseudo-two-level model -- 7.1.6 Matter-radiation equations in the time domain -- 7.1.7 Matter-radiation equations in the frequency domain -- 7.1.8 Dimensionless variables -- 7.1.9 Suggestion for numerical solution -- 7.1.10 Propagation of the power spectrum -- 7.1.11 Discussion of radiation statistics -- 7.2 Multi-level systems -- 7.3 Polarization -- 7.3.1 Zeeman groups -- 7.3.2 Frequency domain -- 7.3.3 Comments on polarization -- 7.4 Beaming -- 7.4.1 Standard model -- 7.5 Moving media -- 7.5.1 CVR phenomena -- 7.6 Free-electron masers -- 7.6.1 Amplification and the cyclotron resonance -- 7.6.2 Astrophysical scenarios -- 8 Computer modelling -- 8.1 Large velocity gradient approximation -- 8.1.1 Theory -- 8.2 Accelerated lambda iteration -- 8.2.1 LI theory -- 8.2.2 ALI perturbation theory -- 8.2.3 Preconditioning -- 8.2.4 Up-down split -- 8.2.5 The error terms -- 8.2.6 ALI flow of control -- 8.2.7 Line overlap -- 8.3 Direct non-linear methods -- 8.3.1 Theory -- 8.3.2 Finite-element discretization -- 8.3.3 Two-level reductions. 8.4 Semi-classical maser saturation -- 8.4.1 Propagation of amplitude and phase -- 8.4.2 Propagation of the power spectrum -- 8.5 Convergence accelerators -- 8.5.1 The Ng accelerator -- 8.5.2 orthomin accelerator -- 8.6 Population tracing -- 9 Masers as diagnostics -- 9.1 Magnetic fields -- 9.1.1 Blended lines -- 9.2 Dynamics: measuring masses -- 9.3 Measuring distances with masers -- 9.3.1 Phase lag method -- 9.3.2 Annual trigonometric parallax -- 9.3.3 Statistical parallax -- 9.3.4 Moving cluster parallax -- 9.4 Masers have their day in cosmology -- 9.4.1 NGC 4258 -- 9.4.2 Similar galaxies at larger distances -- 9.5 Variation of `constants'? -- 9.5.1 Method -- 9.5.2 Redshifts -- 9.5.3 Redshift expressions -- 9.5.4 Status of observations -- 9.6 Masers as probes of turbulence -- 9.7 The inverse problem -- 10 Future prospects -- 10.1 EVLA -- 10.1.1 Introduction to the EVLA -- 10.1.2 Maser science with the EVLA -- 10.2 e-MERLIN -- 10.2.1 Introduction to e-MERLIN -- 10.2.2 e-MERLIN maser science -- 10.3 ALMA -- 10.3.1 Introduction to ALMA -- 10.3.2 ALMA Science -- 10.4 SKA -- 10.4.1 Introduction to the SKA -- 10.4.2 SKA science -- 10.5 VERA -- 10.6 Other new/upgraded telescopes -- Appendix A: Boltzmann's formula -- Appendix B: Vector identities -- B.1 Products of vectors -- B.2 Multiple vector products -- B.3 Vector differential operators -- B.4 Expressions containing vector operators -- Appendix C: Dirac delta-function -- Appendix D: Change of variablesin integration -- Appendix E: Coordinate systems -- E.1 Cartesian coordinates -- E.2 Cylindrical polar coordinates -- E.3 Spherical polar coordinates -- Appendix F: Lagrange inversion theorem -- Appendix G: Local standard of rest -- Appendix H: Stochastic processes -- H.1 Noise power -- H.2 Ergodic theorem -- Appendix I: Fourier transforms -- I.1 Parseval's theorem -- I.2 Convolution theorem. I.3 Wiener-Khintchine theorem -- Appendix J: Matrices -- Appendix K: The centre of mass frame -- K.1 The two-body problem -- Appendix L: Quantum-mechanical operators -- L.1 Expectation values -- L.2 Commutation of operators -- References -- Index.

Written for postgraduates and researchers, this is an up-to-date survey of astrophysical maser sources and their use as astronomical tools.

9781139375320


Astronomical masers.
Microwave measurements.
Radio astronomy.


Electronic books.

QB479.4 .G73 2012

523.01875344

Powered by Koha