Chiasson, John.
Modeling and High Performance Control of Electric Machines. - 1st ed. - 1 online resource (734 pages) - IEEE Press Series on Power Engineering Ser. ; v.26 . - IEEE Press Series on Power Engineering Ser. .
MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES -- Contents -- I DC Machines, Controls, and Magnetics -- 1 The Physics of the DC Motor -- 1.1 Magnetic Force -- 1.2 Single-Loop Motor -- 1.2.1 Torque Production -- 1.2.2 Commutation of the Single-Loop Motor -- 1.3 Faraday's Law -- 1.3.1 The Surface Element Vector dS -- 1.3.2 Interpreting the Sign of eta -- 1.3.3 Back Emf in a Linear DC Machine -- 1.3.4 Back Emf in the Single-Loop Motor -- 1.3.5 Self-Induced Emf in the Single-Loop Motor -- 1.4 Dynamic Equations of the DC Motor -- 1.5 Microscopic Viewpoint -- 1.5.1 Microscopic Viewpoint of the Single-Loop DC Motor -- 1.5.2 Drift Speed -- 1.6 Tachometer for a DC Machine*1 -- 1.6.1 Tachometer for the Linear DC Machine -- 1.6.2 Tachometer for the Single-Loop DC Motor -- 1.7 The Multiloop DC Motor* -- 1.7.1 Increased Torque Production -- 1.7.2 Commutation of the Armature Current -- 1.7.3 Armature Reaction -- 1.7.4 Field Flux Linkage and the Air Gap Magnetic Field -- 1.7.5 Armature Flux Due to the External Magnetic Field -- 1.7.6 Equations of the PM DC Motor -- 1.7.7 Equations of the Separately Excited DC Motor -- Appendices -- Rotational Dynamics -- Gears -- Problems -- 2 Feedback Control -- 2.1 Model of a DC Motor Servo System -- 2.2 Speed Estimation -- 2.2.1 Backward Difference Estimation of Speed -- 2.2.2 Estimation of Speed Using an Observer -- 2.3 Trajectory Generation -- 2.4 Design of a State Feedback Tracking Controller -- 2.5 Nested Loop Control Structure* -- 2.6 Identification of the DC Motor Parameters* -- 2.6.1 Least-Squares Approximation -- 2.6.2 Error Index -- 2.6.3 Parametric Error Indices -- 2.7 Filtering of Noisy Signals* -- 2.7.1 Filter Representations -- 2.7.2 Causality -- 2.7.3 Frequency Response -- 2.7.4 Low-Pass Filters with Linear Phase -- 2.7.5 Distortion -- 2.7.6 Low-Pass Filtering of High-Frequency Noise. 2.7.7 Butterworth Filters -- 2.7.8 Implementation of the Filter -- 2.7.9 Discretization of Differential Equations -- 2.7.10 Digital Filtering -- 2.7.11 State-Space Representation -- 2.7.12 Noncausal Filtering -- Appendix - Classical Feedback Control -- Tracking and Disturbance Rejection -- General Theory of Tracking and Disturbance Rejection -- Internal Model Principle -- Problems -- 3 Magnetic Fields and Materials -- 3.1 Introduction -- 3.2 The Magnetic Field B and Gauss's Law -- 3.2.1 Conservation of Flux -- 3.3 Modeling Magnetic Materials -- 3.3.1 Magnetic Dipole Moments -- 3.3.2 The Magnetization M and Ampère's Law -- 3.3.3 Relating B to M -- 3.4 The Magnetic Intensity Field Vector H -- 3.4.1 The B-H Curve -- 3.4.2 Computing B and H in Magnetic Circuits -- 3.4.3 B is Normal to the Surface of Soft Magnetic Material -- 3.5 Permanent Magnets* -- 3.5.1 Hysteresis Loss -- 3.5.2 Common Magnetic Materials -- Problems -- II AC Machine Theory -- 4 Rotating Magnetic Fields -- 4.1 Distributed Windings -- 4.2 Approximate Sinusoidally Distributed B Field -- 4.2.1 Conservation of Flux and 1/r Dependence -- 4.2.2 Magnetic Field Distribution Due to the Stator Currents -- 4.3 Sinusoidally Wound Phases -- 4.3.1 Sinusoidally Wound Rotor Phase -- 4.3.2 Sinusoidally Wound Stator Phases -- 4.4 Sinusoidally Distributed Magnetic Fields -- 4.4.1 Sinusoidally Distributed Rotating Magnetic Field -- 4.5 Magnetomotive Force (mmf) -- 4.6 Flux Linkage -- 4.7 Azimuthal Magnetic Field in the Air Gap* -- 4.7.1 Electric Field ESa -- 4.7.2 The Magnetic and Electric Fields Bsa, Esa, Bsb, Esb -- Problems -- 5 The Physics of AC Machines -- 5.1 Rotating Magnetic Field -- 5.2 The Physics of the Induction Machine -- 5.2.1 Induced Emfs in the Rotor Loops -- 5.2.2 Magnetic Forces and Torques on the Rotor -- 5.2.3 Slip Speed -- 5.3 The Physics of the Synchronous Machine. 5.3.1 Two-Phase Synchronous Motor with a Sinusoidally Wound Rotor -- 5.3.2 Emfs and Energy Conversion -- 5.3.3 Synchronous Motor with a Salient Rotor -- 5.3.4 Armature and Field Windings -- 5.4 Microscopic Viewpoint of AC Machines* -- 5.4.1 Rotating Axial Electric Field Due to the Stator Currents -- 5.4.2 Induction Machine in the Stationary Coordinate System -- 5.4.3 Faraday's Law and the Integral of the Force per Unit Charge -- 5.4.4 Induction Machine in the Synchronous Coordinate System -- 5.4.5 Synchronous Machine -- 5.5 Steady-State Analysis of a Squirrel Cage Induction Motor* -- 5.5.1 Rotor Fluxes, Emfs, and Currents -- 5.5.2 Rotor Torque -- 5.5.3 Rotor Magnetic Field -- 5.5.4 Comparison with a Sinusoidally Wound Rotor -- Problems -- 6 Mathematical Models of AC Machines -- 6.1 The Magnetic Field BR (iRa, iRb, r, theta - theta R) -- 6.2 Leakage -- 6.3 Flux Linkages in AC Machines -- 6.3.1 Flux Linkages in the Stator Phases -- 6.3.2 Flux Linkages in the Rotor Phases -- 6.4 Torque Production in AC Machines -- 6.5 Mathematical Model of a Sinusoidally Wound Induction Machine -- 6.6 Total Leakage Factor -- 6.7 The Squirrel Cage Rotor -- 6.8 Induction Machine With Multiple Pole Pairs -- 6.9 Mathematical Model of a Wound Rotor Synchronous Machine -- 6.10 Mathematical Model of a PM Synchronous Machine -- 6.11 The Stator and Rotor Magnetic Fields of an Induction Machine Rotate Synchronously* -- 6.12 Torque, Energy, and Co-energy* -- 6.12.1 Magnetic Field Energy -- 6.12.2 Computing Torque From the Field Energy -- 6.12.3 Computing Torque From the Co-energy -- Problems -- 7 Symmetric Balanced Three-Phase AC Machines -- 7.1 Mathematical Model of a Three-Phase Induction Motor -- 7.2 Steady-State Analysis of the Induction Motor -- 7.2.1 Steady-State Currents and Voltages -- 7.2.2 Steady-State Equivalent Circuit Model -- 7.2.3 Rated Conditions. 7.2.4 Steady-State Torque -- 7.2.5 Steady-State Power Transfer in the Induction Motor -- 7.3 Mathematical Model of a Three-Phase PM Synchronous Motor -- 7.4 Three-Phase, Sinusoidal, 60-Hz Voltages* -- 7.4.1 Why Three-Phase? -- 7.4.2 Why AC? -- 7.4.3 Why Sinusoidal Voltages? -- 7.4.4 Why 60 Hz? -- Problems -- 8 Induction Motor Control -- 8.1 Dynamic Equations of the Induction Motor -- 8.1.1 The Control Problem -- 8.2 Field-Oriented and Input-Output Linearization Control of an Induction Motor -- 8.2.1 Current-Command Field-Oriented Control -- 8.2.2 Experimental Results Using a Field-Oriented Controller -- 8.2.3 Field Weakening -- 8.2.4 Input-Output Linearization -- 8.2.5 Experimental Results Using an Input-Output Controller -- 8.3 Observers -- 8.3.1 Flux Observer -- 8.3.2 Speed Observer -- 8.3.3 Verghese-Sanders Flux Observer* -- 8.4 Optimal Field Weakening* -- 8.4.1 Torque Optimization Under Current Constraints -- 8.4.2 Torque Optimization Under Voltage Constraints -- 8.4.3 Torque Optimization Under Voltage and Current Constraints -- 8.5 Identification of the Induction Motor Parameters* -- 8.5.1 Linear Overparameterized Model -- 8.5.2 Nonlinear Least-Squares Identification -- 8.5.3 Calculating the Parametric Error Indices -- 8.5.4 Mechanical Parameters -- 8.5.5 Simulation Results -- 8.5.6 Experimental Results -- Appendix -- Elimination Theory and Resultants -- Problems -- 9 PM Synchronous Motor Control -- 9.1 Field-Oriented Control -- 9.1.1 Design of the Reference Trajectory and Inputs -- 9.1.2 State Feedback Controller -- 9.1.3 Speed Observer -- 9.1.4 Experimental Results -- 9.1.5 Current Command Control -- 9.2 Optimal Field Weakening* -- 9.2.1 Formulation of the Torque Maximization Problem -- 9.2.2 Speed Ranges and Transition Speeds -- 9.2.3 Two Examples -- 9.3 Identification of the PM Synchronous Motor Parameters* -- 9.3.1 Experimental Results. 9.4 PM Stepper Motors* -- 9.4.1 Open-Loop Operation of the Stepper Motor -- 9.4.2 Mathematical Model of a PM Stepper Motor -- 9.4.3 High-Performance Control of a PM Stepper Motor -- Appendices -- Two-Phase Equivalent Parameters -- Current Plots -- Problems -- 10 Trapezoidal Back-Emf PM Synchronous Motors (BLDC) -- 10.1 Construction -- 10.2 Stator Magnetic Field Bs -- 10.3 Stator Flux Linkage Produced by Bs -- 10.4 Stator Flux Linkage Produced by BR -- 10.5 Emf in the Stator Windings Produced by BR -- 10.6 Torque -- 10.7 Mathematical Model -- 10.8 Operation and Control -- 10.8.1 The Terminology "Brushless DC Motor" -- 10.9 Microscopic Viewpoint of BLDC Machines* -- 10.9.1 Axial Electric Field ER -- 10.9.2 Emf Induced in the Stator Phases -- Problems -- Trigonometric Table and Identities -- Trigonometric Table -- Trigonometric Identities -- References -- Index.
JOHN CHIASSON, PhD, is on the faculty of the Department of Electrical and Computer Engineering at Boise State University in Boise Idaho. His research interests include the areas of power electronics and the control of electrical machines.
9780471722342
Electric machinery -- Automatic control -- Mathematical models.
Electronic books.
TK2189.C43 2005
621.31042
Modeling and High Performance Control of Electric Machines. - 1st ed. - 1 online resource (734 pages) - IEEE Press Series on Power Engineering Ser. ; v.26 . - IEEE Press Series on Power Engineering Ser. .
MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES -- Contents -- I DC Machines, Controls, and Magnetics -- 1 The Physics of the DC Motor -- 1.1 Magnetic Force -- 1.2 Single-Loop Motor -- 1.2.1 Torque Production -- 1.2.2 Commutation of the Single-Loop Motor -- 1.3 Faraday's Law -- 1.3.1 The Surface Element Vector dS -- 1.3.2 Interpreting the Sign of eta -- 1.3.3 Back Emf in a Linear DC Machine -- 1.3.4 Back Emf in the Single-Loop Motor -- 1.3.5 Self-Induced Emf in the Single-Loop Motor -- 1.4 Dynamic Equations of the DC Motor -- 1.5 Microscopic Viewpoint -- 1.5.1 Microscopic Viewpoint of the Single-Loop DC Motor -- 1.5.2 Drift Speed -- 1.6 Tachometer for a DC Machine*1 -- 1.6.1 Tachometer for the Linear DC Machine -- 1.6.2 Tachometer for the Single-Loop DC Motor -- 1.7 The Multiloop DC Motor* -- 1.7.1 Increased Torque Production -- 1.7.2 Commutation of the Armature Current -- 1.7.3 Armature Reaction -- 1.7.4 Field Flux Linkage and the Air Gap Magnetic Field -- 1.7.5 Armature Flux Due to the External Magnetic Field -- 1.7.6 Equations of the PM DC Motor -- 1.7.7 Equations of the Separately Excited DC Motor -- Appendices -- Rotational Dynamics -- Gears -- Problems -- 2 Feedback Control -- 2.1 Model of a DC Motor Servo System -- 2.2 Speed Estimation -- 2.2.1 Backward Difference Estimation of Speed -- 2.2.2 Estimation of Speed Using an Observer -- 2.3 Trajectory Generation -- 2.4 Design of a State Feedback Tracking Controller -- 2.5 Nested Loop Control Structure* -- 2.6 Identification of the DC Motor Parameters* -- 2.6.1 Least-Squares Approximation -- 2.6.2 Error Index -- 2.6.3 Parametric Error Indices -- 2.7 Filtering of Noisy Signals* -- 2.7.1 Filter Representations -- 2.7.2 Causality -- 2.7.3 Frequency Response -- 2.7.4 Low-Pass Filters with Linear Phase -- 2.7.5 Distortion -- 2.7.6 Low-Pass Filtering of High-Frequency Noise. 2.7.7 Butterworth Filters -- 2.7.8 Implementation of the Filter -- 2.7.9 Discretization of Differential Equations -- 2.7.10 Digital Filtering -- 2.7.11 State-Space Representation -- 2.7.12 Noncausal Filtering -- Appendix - Classical Feedback Control -- Tracking and Disturbance Rejection -- General Theory of Tracking and Disturbance Rejection -- Internal Model Principle -- Problems -- 3 Magnetic Fields and Materials -- 3.1 Introduction -- 3.2 The Magnetic Field B and Gauss's Law -- 3.2.1 Conservation of Flux -- 3.3 Modeling Magnetic Materials -- 3.3.1 Magnetic Dipole Moments -- 3.3.2 The Magnetization M and Ampère's Law -- 3.3.3 Relating B to M -- 3.4 The Magnetic Intensity Field Vector H -- 3.4.1 The B-H Curve -- 3.4.2 Computing B and H in Magnetic Circuits -- 3.4.3 B is Normal to the Surface of Soft Magnetic Material -- 3.5 Permanent Magnets* -- 3.5.1 Hysteresis Loss -- 3.5.2 Common Magnetic Materials -- Problems -- II AC Machine Theory -- 4 Rotating Magnetic Fields -- 4.1 Distributed Windings -- 4.2 Approximate Sinusoidally Distributed B Field -- 4.2.1 Conservation of Flux and 1/r Dependence -- 4.2.2 Magnetic Field Distribution Due to the Stator Currents -- 4.3 Sinusoidally Wound Phases -- 4.3.1 Sinusoidally Wound Rotor Phase -- 4.3.2 Sinusoidally Wound Stator Phases -- 4.4 Sinusoidally Distributed Magnetic Fields -- 4.4.1 Sinusoidally Distributed Rotating Magnetic Field -- 4.5 Magnetomotive Force (mmf) -- 4.6 Flux Linkage -- 4.7 Azimuthal Magnetic Field in the Air Gap* -- 4.7.1 Electric Field ESa -- 4.7.2 The Magnetic and Electric Fields Bsa, Esa, Bsb, Esb -- Problems -- 5 The Physics of AC Machines -- 5.1 Rotating Magnetic Field -- 5.2 The Physics of the Induction Machine -- 5.2.1 Induced Emfs in the Rotor Loops -- 5.2.2 Magnetic Forces and Torques on the Rotor -- 5.2.3 Slip Speed -- 5.3 The Physics of the Synchronous Machine. 5.3.1 Two-Phase Synchronous Motor with a Sinusoidally Wound Rotor -- 5.3.2 Emfs and Energy Conversion -- 5.3.3 Synchronous Motor with a Salient Rotor -- 5.3.4 Armature and Field Windings -- 5.4 Microscopic Viewpoint of AC Machines* -- 5.4.1 Rotating Axial Electric Field Due to the Stator Currents -- 5.4.2 Induction Machine in the Stationary Coordinate System -- 5.4.3 Faraday's Law and the Integral of the Force per Unit Charge -- 5.4.4 Induction Machine in the Synchronous Coordinate System -- 5.4.5 Synchronous Machine -- 5.5 Steady-State Analysis of a Squirrel Cage Induction Motor* -- 5.5.1 Rotor Fluxes, Emfs, and Currents -- 5.5.2 Rotor Torque -- 5.5.3 Rotor Magnetic Field -- 5.5.4 Comparison with a Sinusoidally Wound Rotor -- Problems -- 6 Mathematical Models of AC Machines -- 6.1 The Magnetic Field BR (iRa, iRb, r, theta - theta R) -- 6.2 Leakage -- 6.3 Flux Linkages in AC Machines -- 6.3.1 Flux Linkages in the Stator Phases -- 6.3.2 Flux Linkages in the Rotor Phases -- 6.4 Torque Production in AC Machines -- 6.5 Mathematical Model of a Sinusoidally Wound Induction Machine -- 6.6 Total Leakage Factor -- 6.7 The Squirrel Cage Rotor -- 6.8 Induction Machine With Multiple Pole Pairs -- 6.9 Mathematical Model of a Wound Rotor Synchronous Machine -- 6.10 Mathematical Model of a PM Synchronous Machine -- 6.11 The Stator and Rotor Magnetic Fields of an Induction Machine Rotate Synchronously* -- 6.12 Torque, Energy, and Co-energy* -- 6.12.1 Magnetic Field Energy -- 6.12.2 Computing Torque From the Field Energy -- 6.12.3 Computing Torque From the Co-energy -- Problems -- 7 Symmetric Balanced Three-Phase AC Machines -- 7.1 Mathematical Model of a Three-Phase Induction Motor -- 7.2 Steady-State Analysis of the Induction Motor -- 7.2.1 Steady-State Currents and Voltages -- 7.2.2 Steady-State Equivalent Circuit Model -- 7.2.3 Rated Conditions. 7.2.4 Steady-State Torque -- 7.2.5 Steady-State Power Transfer in the Induction Motor -- 7.3 Mathematical Model of a Three-Phase PM Synchronous Motor -- 7.4 Three-Phase, Sinusoidal, 60-Hz Voltages* -- 7.4.1 Why Three-Phase? -- 7.4.2 Why AC? -- 7.4.3 Why Sinusoidal Voltages? -- 7.4.4 Why 60 Hz? -- Problems -- 8 Induction Motor Control -- 8.1 Dynamic Equations of the Induction Motor -- 8.1.1 The Control Problem -- 8.2 Field-Oriented and Input-Output Linearization Control of an Induction Motor -- 8.2.1 Current-Command Field-Oriented Control -- 8.2.2 Experimental Results Using a Field-Oriented Controller -- 8.2.3 Field Weakening -- 8.2.4 Input-Output Linearization -- 8.2.5 Experimental Results Using an Input-Output Controller -- 8.3 Observers -- 8.3.1 Flux Observer -- 8.3.2 Speed Observer -- 8.3.3 Verghese-Sanders Flux Observer* -- 8.4 Optimal Field Weakening* -- 8.4.1 Torque Optimization Under Current Constraints -- 8.4.2 Torque Optimization Under Voltage Constraints -- 8.4.3 Torque Optimization Under Voltage and Current Constraints -- 8.5 Identification of the Induction Motor Parameters* -- 8.5.1 Linear Overparameterized Model -- 8.5.2 Nonlinear Least-Squares Identification -- 8.5.3 Calculating the Parametric Error Indices -- 8.5.4 Mechanical Parameters -- 8.5.5 Simulation Results -- 8.5.6 Experimental Results -- Appendix -- Elimination Theory and Resultants -- Problems -- 9 PM Synchronous Motor Control -- 9.1 Field-Oriented Control -- 9.1.1 Design of the Reference Trajectory and Inputs -- 9.1.2 State Feedback Controller -- 9.1.3 Speed Observer -- 9.1.4 Experimental Results -- 9.1.5 Current Command Control -- 9.2 Optimal Field Weakening* -- 9.2.1 Formulation of the Torque Maximization Problem -- 9.2.2 Speed Ranges and Transition Speeds -- 9.2.3 Two Examples -- 9.3 Identification of the PM Synchronous Motor Parameters* -- 9.3.1 Experimental Results. 9.4 PM Stepper Motors* -- 9.4.1 Open-Loop Operation of the Stepper Motor -- 9.4.2 Mathematical Model of a PM Stepper Motor -- 9.4.3 High-Performance Control of a PM Stepper Motor -- Appendices -- Two-Phase Equivalent Parameters -- Current Plots -- Problems -- 10 Trapezoidal Back-Emf PM Synchronous Motors (BLDC) -- 10.1 Construction -- 10.2 Stator Magnetic Field Bs -- 10.3 Stator Flux Linkage Produced by Bs -- 10.4 Stator Flux Linkage Produced by BR -- 10.5 Emf in the Stator Windings Produced by BR -- 10.6 Torque -- 10.7 Mathematical Model -- 10.8 Operation and Control -- 10.8.1 The Terminology "Brushless DC Motor" -- 10.9 Microscopic Viewpoint of BLDC Machines* -- 10.9.1 Axial Electric Field ER -- 10.9.2 Emf Induced in the Stator Phases -- Problems -- Trigonometric Table and Identities -- Trigonometric Table -- Trigonometric Identities -- References -- Index.
JOHN CHIASSON, PhD, is on the faculty of the Department of Electrical and Computer Engineering at Boise State University in Boise Idaho. His research interests include the areas of power electronics and the control of electrical machines.
9780471722342
Electric machinery -- Automatic control -- Mathematical models.
Electronic books.
TK2189.C43 2005
621.31042